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Abstract

Should optimal income taxation change when firms have market power? The recent rise of market
power has led to an increase in income inequality and a deterioration in efficiency and welfare. We an-
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trepreneurs to induce a constrained efficient allocation. Our theory obtains optimal tax rates that depend
on markups and identifies four different channels of taxes on welfare: 1. the Mirrleesian incentive effect;
2. the Pigouvian tax correction of the negative externality of market power; 3. redistribution through
altered factor prices; 4. reallocation of output towards the most productive firms. Our quantitative anal-
ysis of the US economy in 1980 and 2019 shows that the average optimal labor income tax rate in 2019
falls by 10 percentage points compared to 1980. Instead, the optimal average profit tax rate increases by 3
percentage points, and by 25 percentage points at the top. The optimal profit taxes are positive and regres-
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1 Introduction

Market power has an impact on both inequality and efficiency. As market power increases, the share of

output accrues disproportionately to owners of monopolistic firms and less to workers. In addition, market

power creates inefficiencies in the allocation of resources as prices are too high which leads to deadweight

loss and a reduction in welfare. Given that market power changes both efficiency and inequality, under-

standing the effect of market power on tax design is an important objective, especially in light of the rise

of market power and inequality of market power in recent years. Therefore, we ask whether taxes should

reflect the extent of market power, and if so, how?

This paper aims to answer these questions by investigating optimal taxation in conjunction with mar-

ket power. We set up a model that embeds, in an otherwise canonical Mirrlees (1971) taxation framework,

endogenous market power as well as a clear distinction between wage-earning workers and profit-earning

entrepreneurs who operate in oligopolistic markets. The novelty in the setup is the interaction of the ineffi-

ciency of market power in the hands of entrepreneurs with the unobservable effort supply of both workers

and entrepreneurs. This model captures a number of empirically relevant features that link inequality to

market power, in particular, how market power creates inequality. As market power increases, labor in-

come decreases while there is an increase in the level and inequality of income of entrepreneurs. This is

consistent with the decline in the labor share that has been documented and that coincides with the rise of

market power.1 The rise of market power also results in a decrease in output and social welfare.

Our analysis formulates concrete proposals for policymakers how to deal with market power. The most

obvious way to address the distortionary effect of market power is to eradicate the root cause of market

power itself with antitrust policies. Because the optimal antitrust policy may not be achievable,2 we design

optimal policy when we can rely on income and commodity taxation only. The Mirrleesian tax provides

the correct incentives that trade-off efficient effort supply with inequality. In addition, now the optimal tax

system simultaneously corrects the externalities that derive from market power in the goods market. The

income tax thus also plays the role of a Pigouvian tax: a tax that corrects a market failure, whether it be

pollution or in this case, market power. An important insight of this paper is how to optimally trade off

different objectives: inequality and efficiency, while simultaneously correcting market power externalities.

We then perform a detailed quantitative analysis that provides precise policy guidance for policymakers

on how to use taxes to deal with the rise of market power between 1980 and 2019. The tangible policy rule

results in a concrete formula that prescribes a marked decline from 2019 compared to 1980 in labor income

tax rate by 10 percentage points, and an increase in the profit tax by 3 percentage points on average (25

percentage points at the top). Because the policymaker trades off efficiency and equity considerations, while

the profit tax becomes more progressive in 2019 it is still regressive for large firms. Regressive profit taxes

ensure the efficient reallocation of production towards more productive firms.

We link this policy prescription to the theory and decompose the tax formula into four components:3

1See Karabarbounis and Neiman (2014), De Loecker et al. (2020), and Autor et al. (2020).
2Antitrust policy faces many challenges because market power has multiple origins: technological, such as entry barriers,

returns to scale, and firm heterogeneity; and market structure such as M&A (Sutton (1991, 2001), De Loecker et al. (2019)).
3We allow for nonlinear taxes on the income of workers and entrepreneurs, and linear tax on the sales of consumer goods.

However, we can focus attention exclusively on the tax on entrepreneurs and workers, and not on the sales tax. It is well-known
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(i) the traditional Mirrleesian part; (ii) the Pigouvian part; (iii) an indirect redistribution effect (IRE); and

(iv) a reallocation effect (RE). Without inequality, absent any redistribution motives, marginal tax rates on

labor income and profits are equal and negative. The externality from the market power leads to too little

output (due to high prices), so the tax formula consists exclusively of the Pigouvian correction of the exter-

nality which induces the policymaker to subsidize production, where the Pigouvian tax crucially depends

on the average markup weighted by factor inputs. Instead, when there is inequality and the policymaker has

redistributive concerns, the entrepreneurial income tax wedge is a straightforward combination of a stan-

dard Mirrleesian formula and a Pigouvian correction subsidy as long as there is monopolistic competition.

Oligopolistic competition within markets introduces a Stiglitz-like motivation for further subsidizing en-

trepreneurial income and achieving redistribution through price effects (IRE), which depends crucially on

the cross-inverse demand elasticity.4 Finally, when firm-level markups are heterogeneous, the optimal tax

formula corrects for the misallocation of production between firms (RE), which depends crucially on the gap

between the average markup and firm-level markup. We formulate these theoretical results in a sequence

of formal theorems and propositions that derive tax wedges explicitly in terms of primitives.

These four channels make clear how market power affects the optimal tax rate. The net effect on labor

income combines the Pigouvian correction of the markup externality with the Mirrleesian tradeoff between

production and redistribution. The net effect on the profit tax also depends on the indirect redistribution

effect5 as well as the reallocation effect (which incentivizes the production of high-skill entrepreneurs). This

is particularly evident for the top entrepreneurial incomes. The skill gap of entrepreneurs increases in the

markup, which modifies the Mirrleesian part: higher markups raise top tax rates.

Finally, we also discuss extensively how our results relate to the existing literature and investigate the

robustness of our setup. We analyze three alternative specifications of our baseline model: we introduce

non-linear sales taxes, we allow the planner to condition taxes on markups, and we introduce capital invest-

ment. This analysis shows that our results are robust to these variations of the model setup. An important

new insight from the second robustness exercise is the discovery of a new friction. Even if the planner can

condition on markups, the solution is still not the first-best. The reason is that entrepreneurs will adjust their

decisions – effort as well as the number of workers hired – in response to the planner’s optimal tax schedule.

In other words, there is an incentive constraint the planner needs to take into account when solving for the

optimal tax rate, even when conditioning on markups.

2 The Model Setup
Environment. The economy is static. Agents belong to one of two occupations o 2 {e, w}, entrepreneur

or worker. The occupational types are fixed. The measure of workers is Nw; the measure of entrepreneurs

Ne is normalized to one. There is a representative firm producing final goods in a competitive market and

making zero profits. Production of the final goods needs the composite inputs of firm-level intermediate

goods. Each intermediate good is produced by an entrepreneur (idea), and the effort of workers.

(e.g. Chari and Kehoe (1999) and Golosov et al. (2003)) that multiple tax policies can implement the same second-best. In our
setting, we can substitute a linear sales tax with a uniform tax on labor income and profits. Therefore, we assume sales taxes are 0.

4The cross-inverse demand elasticity is the elasticity of the price with respect to the outputs of competitors in the same market.
5The government can reduce the income gap between entrepreneurs by reducing the price of the products of high-income

entrepreneurs. To achieve this, the government should decrease the profit tax rate, which raises the output of the firm.
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Within each occupation, agents are heterogeneous in their productivity. Denote the ability of an agent

by qo 2 Qo ⇢ R+, distributed according to the cdf Fo(qo) with density fo(qo). Set xo(qo) as the efficiency

labor provided by qo per unit time. It will be convenient to order ability on the unit interval and consider

the uniform distribution of ability, so that Qo = [0, 1], Fo(qo) = qo and fo(qo) = 1 (see e.g., Tervio (2008)).

Since xo(·) is free, there is no loss to make the above assumptions about the distribution of ability.

Preferences. Workers and entrepreneurs have preferences for consumption and effort. We consider a

quasi-linear utility function.6 uo (co, lo) = co � fo(lo) is the utility function of an agent of occupation o,

where lo refers to working hours and co is the consumption. fo(·) is twice continuously differentiable and

strictly convex. To simplify the analysis, we consider the utility function with constant elasticity of labor

supply. Set #o ⌘ f0
o(lo)

lof00
o (lo)

. Denote by Vo(qo) the indirect utility of a qo agent.

Market. One individual firm is indexed by a triple (i, j, qe) with qe 2 Qe the ability of entrepreneur, j 2
[0, J(qe)] the order of markets, and i = 1, ..., I the order of firm in the most granular market. I 2 N+ is

the number of firms in one of the most granular markets. J(qe) 2 R+ is the measure of markets of qe

entrepreneurs. A differentiated input can also be fully identified by the triple (i, j, qe). The differentiated

inputs produced by I entrepreneurs of qe ability in the same market is used to produce the market-level

intermediate goods (qe, j). The final good is an aggregation of the intermediate goods across qe and j.
The labor and final goods markets are perfectly competitive. Instead, the intermediate goods market

exhibits market power, modeled as a variation of the structure in Atkeson and Burstein (2008), but with

product differentiation in production rather than in preferences. The most granular market is small, where

a finite number (I) of entrepreneurs of equal type produce differentiated inputs for a common intermediate

good under Cournot competition. The intermediate goods from these granular markets then compete in a

unified market under monopolistic competition. Production of a differentiated input needs the composite

of entrepreneurial effort (idea), and the effort of workers.

Technology. An agent of ability qo who works lo hours supplies xo(qo)lo units of effective labor factors.7

The pre-tax labor income yw (qw) = xw (qw) lw (qw)W is the effective labor supply multiplied by the wage

rate as in Mirrlees (1971). W is the competitive wage any firm pays for one efficient unit of labor.8 The

firm-level output Qij(qe) = Qij (xe(qe)le(qe), Lw(qe)) is a function of entrepreneurial effort le(qe) and labor

inputs Lw (qe). The profit of (i, j, qe) firm is given by:

ye,ij (qe) = (1 � ts) Pij

⇣
Qij(qe),

�
Q�ij (qe)

 
�i 6=i , qe

⌘
· Qij(qe)� WLw (qe) ,

where Pij

⇣
Qij,

�
Q�ij (qe)

 
�i 6=i , qe

⌘
is the inverse demand function of (i, j, qe) firm. ts is a sales tax. Q�ij (qe)

referers to the output of (�i, j, qe) firm, which is (i, j, qe) firm’s competitor in the same granular market.

6The quasi-linear utility function eliminates the income effect and the complementarity between consumption and labor. This
assumption makes the analysis more tractable and is not crucial to the main economic implication of this paper. See Atkinson and
Stiglitz (1976), Mirrlees (1976) and Christiansen (1984) how the omitted elements affect the optimal taxation.

7The assumption of efficiency units drastically simplifies the solution of the model but it is not innocuous. The efficiency units
assumption rules out sorting because firms are indifferent across worker types as long as they provide exactly the same efficiency
units. See amongst others Sattinger (1975a), Sattinger (1993) and Eeckhout and Kircher (2018) how the assumption of efficiency
implies an absence of sorting. To date, we know of no way how to solve the optimal taxation problem with market power in the
presence of sorting.

8Throughout this paper, we assume that labor factors supplied by workers of different abilities are perfectly substitutable. For
readers who are interested in imperfectly substitutable labor factors, please refer to Sachs et al. (2020) and Cui et al. (2021).
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The above profit income function nests many cases in the literature: 1. In Mirrlees (1971), yo(qo) =

xo (qo) lo(qo)P is determined by the agent’s ability, effort, and the competitive price P; 2. In Stiglitz (1982),

yo(qo) = xo (qo) lo(qo)P(qo). The competitive price P(qo) is heterogeneous due to the imperfect substitutabil-

ity of labor. In either case, the entrepreneur treats the prices as given.

The profit income reveals what is new in this paper: 1. Entrepreneurs select output strategically to

manipulate the prices of their own products; 2. Entrepreneurs competing in the same market influence

each other’s product prices. The profit tax affects firm-level profit both through its influence on the firm’s

behavior and the behavior of the firm’s competitors. This setup distinguishes our paper from the classic

studies by Mirrlees (1971) and Stiglitz (1982). It also distinguishes our paper from the current literature on

optimal taxation with monopolistic competition, where firms have monopoly pricing power in the granular

markets (see e.g., Gürer (2021) and Boar and Midrigan (2021)).

Atkeson-Burstein Economy. Our most general conclusions do not depend on the specific functional form

of the production technology. For some analytical results, we need to specify the production technology

and market structure explicitly. For that purpose we study a variation of Atkeson and Burstein (2008). The

labor and final goods markets are perfectly competitive. Instead, the intermediate goods market exhibits

market power. The firm-level production technology of the intermediate good is as in Lucas (1978), with

one heterogeneous entrepreneur hiring an endogenous number of workers to maximize profits. Because the

productivities of entrepreneurs and workers are expressed in efficiency units, the technology takes efficiency

units as inputs instead of bodies. The quantity of output of a qe entrepreneur is therefore:9

Qij(qe) = xe(qe)le,ij (qe) · Lw,ij (qe)
x , 0 < x  1. (1)

Note that because of the efficiency units assumption, output Qij(qe) does not depend on the worker types qw

that are employed. There is no capital in our model. Therefore we assume that, as in Lucas (1978) or Prescott

and Visscher (1980), the entrepreneur is the residual claimant of output, i.e., they “own” the technology qe.

Therefore, the entrepreneur hires labor to maximize profits.

Given the technology, we can aggregate I close substitutes (say Coke and Pepsi, or Toyota and Ford) in

the same market with elasticity h (qe) to Qj (qe), then across all J (qe) markets with elasticity s to Q (qe), and

finally from a continuum of less substitutable input goods {Q (qe)}qe2Qe
(say soft drinks and cars) with the

same elasticity s to the final goods Q:10

Qj(qe) =

"
I�

1
h(qe)

I

Â
i=1

Qij (qe)
h(qe)�1

h(qe)

# h(qe)
h(qe)�1

, (2)

Q(qe) =


J(qe)

� 1
s

Z

j
Qj (qe)

s�1
s dj

� s
s�1

, (3)

Q = A
Z

qe

z(qe)Q (qe)
s�1

s dqe

� s
s�1

. (4)

9The case where x = 1, is common in the literature that models imperfect competition through imperfect substitutes (Melitz
(2003), Atkeson and Burstein (2008), De Loecker et al. (2019)). The linear technology simplifies the derivations, and in addition,
there is no indeterminacy in the firm size because all goods are imperfect substitutes that determine the boundaries of the firm.

10With the Atkeson and Burstein (2008) technology, the elasticities of substitution between intermediate goods of different mar-
kets are uniform. In settings with more general technology, the elasticities of substitution may be asymmetric. As elasticities of
substitution within markets are asymmetric, the assumption of equal elasticities between markets does not matter for the impact
of market power. However, it is a matter of how endogenous wages react to tax policy. Readers interested in this can refer to
Rothschild and Scheuer (2013) and Sachs et al. (2020).
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The elasticity of substitution s across markets (between soft drinks and cars) is smaller than within

markets (between Coke and Pepsi): s < h(qe). In order to rule out abnormal markups, throughout this

paper we assume that s is greater than 1.11 z(qe) is a distribution parameter. As illustrated by Ales et al.

(2015), variations in z(qe) capture the technological or preference-based variations in demand for different

skills. Last, to abstract from the love-of-variety effect related to I, we normalize the firm-level and market-

level output by I�
1

h(qe) and J(qe)�
1
s .12 We then introduce c(qe) =z(qe) f e(qe)�

1
s as a modified distribution

parameter. Last, set

Xe(qe) = A
s�1

s xe(qe)
s�1

s c(qe)

as the composite ability of qe entrepreneur.13

Information and Policy. In the tradition of Mirrleesian taxation, we assume types qo and effort lo are not

observable, while incomes yw and ye are observable. As additional actions are introduced, further clari-

fication of information is desirable. In particular, we assume factor inputs Lw are also observable. Then

unobservability of qe is equivalent to saying that the firm-level output Qij and price Pij cannot both be ob-

served. Otherwise, the government can back out the type of entrepreneur by Pij = Pij

⇣
Qij,

�
Q�ij

 
�i 6=i , qe

⌘
.

There are several justifications for this information constraint. Effective output Qij, just like the effort lo,

is difficult to measure objectively. Though working hours can be observed, the effort lo is difficult to ob-

serve because the intensity of working cannot be measured objectively. Similarly, although the quantity of

products may be counted, quality and therefore effective output is difficult to measure.14

We consider that the government can use profit and labor income taxes Te : R+ 7! R and Tw : R+ 7! R

to be arbitrarily non-linear in the Mirrlees tradition. These direct taxes together with a sales tax ts 2 R

compose the tax policy system T ⌘ {Te, Tw, ts} that we consider in our benchmark model. Since the labor

and profit income taxes are free, we can normalize the sales tax to zero without loss of generality. The

after-tax income of workers and entrepreneurs are cw = yw � Tw (yw) and ce,ij = ye,ij � Te
�
ye,ij
�
.

In our benchmark model, we restrict the government to levying a linear sales tax, which is typically used

in the real economy.15 The government is therefore solving for the third-best, rather than the second-best

allocation, under both the information and policy constraints. In section OC.5.1, we extend the model to

allow for nonlinear sales tax and compare the third-best with the second-best allocation.

11See equation (20) below for details.
12Note that the measure of markets, J(qe) =

Ne f (qe)
I , is also the measure of varieties provided by qe entrepreneurs.

13In Online Appendix OA.2.3, we show that the equilibrium allocations are determined by the value of composite ability, while
prices depend on the structure of the composite ability. The two qe-dependent components (c (qe) and xe (qe)) of the composite
ability are both determinants of the productivity of a firm. Although the equilibrium allocations are determined by the composite
productivity, c (qe) and xe (qe) are not perfect substitutes in the sense that the equilibrium prices depend on the specific values
of c (qe) and xe (qe). This is because c (qe) directly enters the demand function and interacts with the markup while xe (qe) does
not. Interestingly, what’s crucial for pinning down the optimal tax formulas is the value of composite ability (see Proposition 4 for
example). For general results, see equation (33) and Theorem 1.

14In reality, there are many other reasons why prices and yields are difficult to observe efficiently. For example, there may be
collusion between companies and between companies and buyers to hide prices or efficiency to reduce tax burdens.

15Alternatively, one can consider a linear tax on labor inputs (such as salary tax). Both the linear sales tax and linear tax on the
salary pay act as tax wedges between the marginal cost and income of labor inputs Lw,ij. Since the prediction of optimal taxation
is about tax wedges while not about specific tax policies (e.g., see Chari and Kehoe (1999); Golosov et al. (2003); Salanié (2003),
pages 64-66), there is no need to introduce both of these indirect taxes. To see this, consider equation (9) below, where if we levy an
additional tax tl on the labor inputs of the firm, the ratio of the marginal income of Lw,ij to the marginal cost of Lw,ij is 1+tl

1�ts
, which

means the role of tl as a tax wedge can be replaced by ts.
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Planner’s Objective. The government chooses tax policies to maximize social welfare:

Â
o2{w,e}

No

Z

qo
G (Vo(qo)) efo (qo) dqo, (5)

subject to the budget constraint

Ne

Z

qe

Te (ye (qe)) fe (qe) dqe + Nw

Z

qw

Tw (yw (qw)) fw (qw) dqw = R

and agents’ responses to the taxes. R 2 R+ is an exogenous tax revenue. The social welfare function

G : R+ 7�! R+ is twice differentiable and concave. The PDF efq (·) is a Pareto weights schedule, which is

assumed to be continuous.16

Equilibrium. We formally define equilibrium below once we have solved for the best responses of all

agents. We now give an informal definition of equilibrium. Given the tax regime T , a Cournot competitive

tax equilibrium allocation and price system are such that the resulting allocation maximizes the final good

producer’s profit, and maximizes the entrepreneur’s and worker’s utility subject to the budget constraint. In

addition, all markets are clear under the price system, and the government’s budget constraint is satisfied,

which, given other budget constraints, is equivalent to saying that the social resource constraint is satisfied.

3 Solution
We solve the general technology first (Section 3.1); then for the Atkeson-Burstein technology (Section 3.2).

3.1 The Cournot Competitive Tax Equilibrium

Final Goods Market Solution. We start with the final goods market where we normalize the price of the

final good to one. The final good producer chooses the inputs of the intermediate goods to maximize its

profit. The demand for the intermediate input solves:

P = max
QD

ij (qe)
Q �

Z

qe

Z

j

h
Âi QD

ij (qe) Pij (qe)
i

djdqe, (6)

where QD
ij (qe) is the quantity demanded from firm (i, j, qe).

Entrepreneur’s Solution. In our benchmark model, we consider the Cournot Competitive Tax Equilib-

rium in intermediate goods market j between I firms. Because there are a continuum of intermediate good

markets j and qe, there is only strategic interaction within a market j and all firms treat the output decisions

in other intermediate goods markets as given.

All firms treat others’ outputs as given. The problem of the entrepreneur in (i, j, qe) firm is:

Ve,ij (qe) ⌘ max
le,ij,Lw,ij

ce � fe (le) (7)

s.t. ce,ij = ye,ij � Te
�
ye,ij
�

(8)

ye,ij = (1 � ts) Pij

⇣
Qij,

�
Q�ij (qe)

 
�i 6=i , qe

⌘
Qij � WLw,ij, (9)

where Qij = Qij (xe(qe)le, Lw) is the quantity supplied of the intermediate good. We denote Pij(qe), Lw,ij(qe),

ce,ij(qe), ye,ij(qe) and le,ij(qe) as the price of intermediate goods, labor inputs, consumption, profit and effort

of the (i, j, qe) entrepreneur.

16The use of general Pareto weights in the optimal tax literature goes all the way back to Diamond and Mirrlees (1971a) and
Diamond and Mirrlees (1971b), and in the context of our model to Scheuer (2014).
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Worker’s Solution. Type qw workers choose labor supply and consumption to maximize their utility, given

the wage rate W:
Vw (qw) ⌘ max

lw
cw � fw (lw) (10)

s.t. cw = Wxw (qw) lw � Tw (Wxw (qw) lw) . (11)

For later use, denote cw(qw), yw(qw) and lw(qw) as the consumption, income and effort of a qw worker.

Market Clearing. Commodity and labor markets clearing require that the quantity demanded in the out-

put sector QD
ij (qe) from equation (6) equals the quantity supplied QS

ij (qe) from equation (7):

QD
ij (qe) = QS

ij (qe) (12)

and Q =
Z

qw

cw(qw) fw(qw)dqw +
Z

qe

Z

j

h
Âi ce,ij (qe)

i
djdqe + R, (13)

and
Z

qw

xw (qw) lw (qw) fw(qw)dqw =
Z

qe

Z

j

h
Âi Lw,ij (qe)

i
djdqe, (14)

where R is the exogenous government revenue.

Solving individuals’ and final good producers’ problems gives the following equilibrium conditions:

Pij (qe) =
∂Q

∂Qij (qe)
, (15)

W = (1 � ts)
∂
⇥
Pij (qe) Qij (qe)

⇤

∂Lw,ij (qe)
, (16)

f0
w (lw (qw)) = Wxw (qw)

⇥
1 � T0

w (Wxw (qw) lw (qw))
⇤

, (17)

f0
e
�
le,ij (qe)

�
= (1 � ts)

∂
⇥
Pij (qe) Qij (qe)

⇤

∂Qij (qe)

∂Qij (qe)

∂le,ij (qe)

⇥
1 � T0

e
�
ye,ij (qe)

�⇤
. (18)

When first-order conditions are both necessary and sufficient to individuals’ and final good producer’s

problems, the equilibrium allocations are determined by (12) to (18) and individuals’ budget constraints.

Equilibrium. Throughout this paper, we will consider the following symmetric Cournot competitive tax

equilibrium. We refer to the allocation set A = {Lw, lw, le, cw, ce} as a combination of consumption schedules

co : Qo 7�! R+, labor supply schedules lo : Qo 7�! R+ and labor demand schedule Lw : Qw ! R+ which

are independent on (i, j). Prices P = {P, W} in the equilibrium is a combination of wage rate W and price

schedule P : Qe 7�! R+ that independent on (i, j). Formally, we consider the following symmetric Cournot

tax equilibrium:

Definition 1 A Symmetric Cournot Competitive Tax Equilibrium (SCCTE) is a combination of a tax system T , a
symmetric allocation A, and a symmetric price system P , such that given the policy and price system, the resulting
allocation maximizes the final good producer’s profit (6); maximizes the entrepreneurs’ and workers’ utilities (7) and
(10) subject to the budget constraints (8) and (11); the price system satisfies (16) and (15); and labor and commodity
markets are cleared, i.e., (12) to (14) are satisfied.

Note that because of Walras’s law, we do not need to impose the government’s budget constraint in our

definition of SCCTE. Given the agent’s budget constraints and market clear conditions, the government’s

budget constraint must be satisfied.
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We now make some common restrictions on the equilibrium that we consider throughout the paper.

First, we assume that the mechanisms (tax policies) are sufficiently differentiable and first-order conditions

are both necessary and sufficient to the agents’ problems. This is a common assumption in the optimal

tax literature, which is equivalent to assuming that the optimal tax schedules are twice continuously dif-

ferentiable and not too regressive (see e.g., Jacquet et al. (2013)). We will show the sufficiency of first-order

conditions under our leading production function (see section 4). Second, we assume that:

Assumption 1 In the symmetric Cournot competitive tax equilibrium:

(i) yw(qw) is differentiable, strictly positive, and strictly increasing in qw 2 Qw;

(ii) ye (qe) is differentiable, strictly positive, and strictly increasing in qe 2 Qe.

The Spence-Mirrlees condition implies non-decreasing labor income in wages.17 For simplicity, we as-

sume that yw (qw) is strictly increasing in qw, which in turn implies x0w (·) > 0. With Assumption 1, we can

define Fyo (yo(qo)) = Fo(qo) and fyo (yo(qo)) = F0
yo (yo(qo)) as the CDF and PDF of entrepreneurial and labor

income. Besides, Assumption 1 excludes cases with mass points.

Notation. In what follows, where there is no confusion, we will drop the subscript ij. For example, in the

symmetric equilibrium, the markup is the same for all entrepreneurs with equal types. Therefore, we often

denote the markup µij(qe) by µ(qe), and the labor demand Lw,ij (qe) by Lw (qe). The inverse demand function,

taking into account strategic interaction between firm i and firms �i, simplifies to Pij
�
Qij, Q�ij (qe) , qe

�
as

the competitors produce the same amount of products.

Price Elasticity. Define the own and cross-inverse demand elasticity as:

#P,own
Qij

(qe) ⌘
∂ ln Pij

�
Qij, Qij (qe) , qe

�

∂ ln Qij
|Qij=Qij(qe) and #P,cross

Q�ij
(qe) ⌘

∂ ln Pij
�
Qij, Qij (qe) , qe

�

∂ ln Qij (qe)
|Qij=Qij(qe).

The cross-inverse demand elasticity is the elasticity of an entrepreneur’s inverse demand function with

respect to her competitor’s output. The appearance of cross-inverse demand elasticity highlights the dif-

ference between Cournot competition and Monopoly. With strategic interaction between competitors in a

submarket, the demand of a firm depends on its competitors’ outputs.

Markups. Following the literature, we define the markup as the ratio of price to marginal cost

µij(qe) ⌘
Pij (qe)

MCij(qe)
=

Pij (qe)
W

∂Qij(qe)
∂Lw,ij(qe)

(1�ts)

. (19)

The firm’s FOC delivers a relationship, known as the Lerner Rule, between the (own) inverse-demand

elasticity #P,own
Qij

(qe) and markups µij(qe).18 The markup is thus related to the demand elasticity:

µij(qe) =
1

1 + #P,own
Qij

(qe)
. (20)

17See e.g., see Salanié (2003), p. 87.
18This follows from profit maximization, in equation (16), which implies W = Pij

⇣
Qij (qe) , qe

⌘
[1 + g (qe)]

∂Qij(qe)
∂Lw,ij(qe)

(1 � ts) .
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The higher the demand elasticity (the lower the inverse demand elasticity), the higher the markup. In our

results under the SCCTE, we define the economy-wide aggregate markup as:

µ ⌘
Z

qe

µ (qe)w (qe) dqe, where w (qe) ⌘
Lw (qe) fe (qe)R

qe
Lw (qe) fe (qe) dqe

. (21)

In the Atkeson-Burstein economy, #P,cross
Q�ij

(qe) = � 1
s � #P,own

Qij
(qe) and #P,own

Qij
(qe) = 1

µij(qe)
� 1.19

3.2 The Atkeson-Burstein Economy

Before solving for the optimal tax policy, we examine the factors that determine the impact of taxation on

markup in the Atkeson-Burstein economy. In section C.2, we consider another important special case, i.e.,

monopolistic competition with non-constant elasticities of substitution (Kimball aggregator).

Markups. As in Atkeson and Burstein (2008), under the above technology with nested CES preferences,

the inverse-demand elasticity can be written in weighted form:20

#P,own
Qij

(qe) = �


1
h (qe)

�
1 � sij

�
+

1
s

sij

�
� � 1

s
, (22)

where sij is the sales share of firm i in market j. Therefore, the markup depends on the weighted sum of the

elasticity of substitution between intermediate goods, and the intensity of competition in the submarket.

µij(qe) =
1

1 + #P,own
Qij

(qe)
 s

s � 1
. (23)

The lower the h(qe) and s, the less substitutable the goods are within and between markets, and the higher

the markup. Most crucially, the markup increases as the sales share sij, and hence the number of competitors

I, decreases in the market. The smaller the number of competitors I, the smaller the weight on the within

market elasticity higher the weight on 1
h(qe)

and the higher the weight on 1
s . Firms that face little competition

face little substitution and hence markups.21

Labor Share. In our model, the firm’s labor share is simply the ratio of the firm’s total wage bill to its

revenue. In the absence of capital, the residual therefore is the income of the entrepreneur, i.e., the profit

share. Denote by nij(qe) the labor share which can be defined as

nij(qe) ⌘
WLw,ij(qe)

Pij (qe) Qij (qe) (1 � ts)
.

While superficially this expression hints at an apparent positive relation between the sales tax rate ts (an

increase in ts increases the labor share), taxes also affect the other variables such Lw,ij, Pij and Qij, all of

which are endogenous. When we use the firm’s first-order condition, we can rewrite the labor share as

nij(qe) =
x

µij(qe)
,

19See Appendix A.2 for details.
20See Appendix A.2.2 for details.
21We can derive the equivalent inverse demand elasticity under Bertrand competition which is different from the residual de-

mand elasticity under Cournot: #P,own
Qij

(qe) = �
h⇣

1 � sij

⌘
h (qe) + sijs

i�1
. In fact, all our results go through under Bertrand and

are similar to Cournot once we adjust equation (22).
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which shows a negative relation between the firm’s labor share and its markup. Denote the aggregate labor

share by

n ⌘
W
R

xw (qw) lw (qw) fw (qw) dqw

Q
.

Although the firm-level labor share is exogenous to the tax rate, the aggregate labor share is does depend

on the tax rate. Proposition 1 summarizes the properties of the equilibrium labor share.

Proposition 1 In the Atkeson-Burstein economy:

(i) The firm labor share nij(qe) is independent of taxes and is decreasing in the markup µij(qe);

(ii) In the Laissez-faire economy,22 the aggregate labor share n decreases in market power, i.e., increase in I, when

1
1 + #e

+
1

s � 1
> x. (24)

Proof. See Online Appendix OA.3.

Part (i) of Proposition 1 already hints at the fact that taxes cannot “solve” the effect that market power

has on both efficiency and inequality. To achieve the first-best, which we define below, the planner needs

to tackle the problem at its root cause, either through antitrust enforcement or regulation of firms and in-

dustries. The objective of this paper is to show that optimal taxation can nonetheless restore efficiency and

equality. Most importantly, we show that the optimal policy varies with market power and how.

This result also confirms a well-known theoretical property, namely that firms with higher individual

markups have a lower labor share. This result is an immediate consequence of the firm’s first-order con-

dition. Higher markups mean that the firm sells and produces fewer units, even though sales are higher.

Therefore, the firm needs fewer labor inputs, and the labor share falls. De Loecker et al. (2020) and Autor

et al. (2020) show that the negative relation at the firm level between markups and the labor share is borne

out in the data.

Part (ii) of Proposition 1 is strong in the sense that it is not dependent on the assumptions on h(qe).

The parameter restriction (24) has intuitive economic interpretations. It ensures that with the increase of

I the entrepreneurial effort of small firm increases as relative to the large firm, so that the market is not

overly concentrated to cause an incerease of average markup. Besides, the condition guarantees that the

entrepreneurial effort decreases in markup (increases in I).

The Laissez-faire Economy. We further analyze the properties of the model economy that we just laid out

without government intervention: the government revenue R is zero and no taxes are levied. We ask what

the effect is of market power on the equilibrium allocation. This serves as a benchmark to understand the

workings of the model before we introduce the role of optimal taxation. In the Laissez-faire economy, we

consider the comparative statics effect of a rise in the markup. We consider an increase in markups economy-

wide by changing the number of competing firms I in all markets simultaneously. This comparative statics

effect economy-wide affects individual firm outcomes, as well as aggregates. We summarize the results in

the following proposition.

22See the following section 3.2 for details about the Laissez-faire economy.

10



Proposition 2 Consider the Atkeson-Burstein economy with constant h(qe). Let conditions (24) and (25) hold:

1 + #w

#w
� x (1 + #e) > 0. (25)

With the decrese of I, we have the following results:

(i) At the individual level, the labor share nij(qe), the quantity Qij(qe), sales Pij(qe)Qij(qe), entrepreneurial effort
le,ij(qe), worker effort lw(qw), income yw(qw) and utility Vw(qw) decrease; The price Pij(qe) remains unchanged;
The effects on entrepreneur utility Vij,e(qe) and entrepreneur profits ye,ij(qe) are ambiguous;

(ii) At the aggregate level, the wage rate W, the aggregate labor share n and output Q decrease. The effects on
aggregate entrepreneur profits is ambiguous.

(iii) Individual and aggregate entrepreneur profits increase if and only if µ  x
#e

1+#e +
#w

#w+1 x , and individual and aggre-

gate entrepreneur utility increase if and only if µ  x+ #e
1+#e

#e
1+#e +

#w
1+#w x .

Proof. See Online Appendix OA.4.

Condition (25) guarantees that the demand elasticity of Lw,ij is smaller than the supply elasticity of lw, so

that the equilibrium wage increases in TFP (see e.g., (OA15)) and the labor demand decreases in markup.

The two restrictions on the parameters are weak and are generally satisfied for the range of parameter values

used in the quantitative literature.

Overall, the effect of the rise of market power is negative for workers and positive for entrepreneurs:

market power lowers the income and the utility of workers and it increases the profits and the utility of

entrepreneurs. In addition, the rise of market power has a negative impact on the aggregate economy: the

wage rate declines, and aggregate output, sales, and labor share decline.

The conditions for increasing profits and increasing utility posited in the Proposition are satisfied for

typical values used in quantitative studies. For example, with #e = #w = 0.33 and x = 0.5, the condition for

increasing profits is satisfied for markup µ < 1.33 and the second condition for increasing utility is satisfied

for µ < 2. When x is increased to 0.6, the condition is even looser, with the first and second conditions

changed to µ < 1.5 and µ < 2.125, respectively.

4 The Planner’s Problem

The planner’s problem can be treated ins different ways. In the heuristic argument that follows, the plan-

ner adopts truth-telling mechanisms {cw(qw), yw(qw)}qw2Qw
and {ce(qe), ye(qe)}qe2Qe

to implement allocation

rules that maximize social welfare subjecting to the information, resource, and policy constraints.

Specifically, the planner asks each of the entrepreneurs and workers to report their types and assigns

a reward contingent on the announced type. A worker who reports q0w obtains yw (q0w) in labor income,

which results in cw(q0w) of after-tax income. Similarly, an entrepreneur who reports q0e obtains ye(q0e) in profit

and ce(q0e) in after-tax profit. The incentive-compatible conditions for workers are standard and can be

found in any Mirrlessian tax literature. Additional clarification is required for the entrepreneur’s incentive-

compatible condition.
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4.1 The First-order Approach

We follow the literature by applying the first-order approach (FOA) to simplify the incentive constraints and

solve the planner’s problem. In section OB.1, we discuss the validity of the FOA in our setting.

Worker. Workers report their types to maximize their gross utility Vw(qw). The worker’s first-order incen-

tive condition is similar to that in the literature:

V 0
w(qw) = lw(qw)f

0
w (lw(qw))

x0w (qw)
xw (qw)

, 8qw 2 Qw, (26)

where Vw (qw) = cw (qw) � fw

⇣
yw(qw)

xw(qw)W

⌘
. When the Spence-Mirrlees condition is satisfied, the first-order

incentive condition is not only necessary but also sufficient (see e.g., Salanié (2003) p.88-90).

Entrepreneur. In the subsequent analysis, we will focus on the entrepreneur’s first-order incentive condi-

tion in the Nash equilibrium. That is, given that all other competitors are telling the truth, an entrepreneur

also finds it optimal to report the truth. Formally, for any j 2 [0, J (q)] and i = 1, ..., I, truth-telling requires

that entrepreneurs with type qe report a type q0e to maximize their gross utility Ve,ij(q0e|qe; qe).

As Cournot competitive equilibrium is a special case of Nash equilibrium, the above incentive condition

is consistent with the SCCTE considered in this paper. Later, we will show that when the above incentive

conditions together with the resource and policy constraints are satisfied, there exist a SCCTE, where the

optimal allocation can be implemented by the policy system considered in our model. Under the above

truth-telling condition and SCCTE, we can simplify Ve,ij(q0e|qe; qe) as Ve(q0e|qe).

An entrepreneur’s problem is to choose a reporting type q0e to maximize :

Ve (qe) = max
q02Qe

Ve(q
0
e|qe), (27)

where Ve(q0e|qe) = ce (q0e)� fe (le (q0e|qe)) is the utility of the qe entrepreneur who reports q0e and le (q0e|qe) is

the entrepreneurial labor supply needed to finish the task:

le
�
q0e|qe

�
= min

Lw,le
le (28)

s.t. (1 � ts) Pij
�
Qij, Q�ij (qe) , qe

�
Qij � WLw = ye

�
q0e
�

.

In what follows, we denote by Lw (q0e|qe) the solution of the above problem, and let

Qij
�
q0e|qe

�
= Qij

�
xe (qe) le

�
q0e|qe

�
, Lw

�
q0e|qe

��
;

Pij
�
q0e|qe

�
= Pij

�
Qij
�
q0e|qe

�
, Q�ij (qe) , qe

�
.

In Online Appendix OB.2, we show when the first-order conditions of the above problem is not only

necessary but also sufficient. In the following analysis, we always assume that the first-order conditions of

the above problem is both necessary and sufficient, where le (·|·) : Q2
e 7! R+ is differentiable. The first-order

necessary incentive condition requires ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0. From this, Lemma 1 follows:
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Lemma 1 Under Assumption 1, the first-order necessary incentive condition is equivalent to:

V 0
e (qe) = f0

e (le (qe)) le (qe)

"
µ (qe)

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#
, 8qe 2 Qe. (29)

Proof. See Appendix B.1.

Lemma 1 is useful because it demonstrates that the incentive-compatible constraint of the entrepreneur

boils down to condition (29). Two things worth noting here: First, the incentive condition depends on
d ln Pij(Qij,Qij(qe),qe)

dqe
|Qij=Qij(qe) instead of d ln P(qe)

dqe
. As the entrepreneurs can change the price of their own prod-

ucts by changing the firm-level output Qij, the tax has no first-order effect on the relative price through its

effect on a firm’s own output Qij. Therefore, the traditional indirect redistribution route is closed. Second,

the tax exhibit an indirect redistribution effect through its influence on Q�ij. The equation

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) =

∂ ln Pij
�
Qij (qe) , Qij (qe) , qe

�

∂qe
+ #P,cross

Q�ij
(qe)

d ln Qij (qe)

dqe

highlights the difference between Cournot competition and Monopoly. With strategic interaction between

competitors in a submarket, the inverse demand of the firm depends on the competitors’ outputs, which

introduces a novel indirect redistribution route.

4.2 Implementability

In our benchmark, we consider the planner’s third-best solution, where the sales tax is restricted to be

uniform. Essentially, this constraint requires that the tax wedges between the marginal cost and benefit

of labor inputs Lw (qe) must be uniform across the firms. In this Section, we show how the constrained

optimal allocation can be implemented by the tax system T . Besides, we demonstrate that ts is redundant

in implementing the constrained optimal allocation, so that we can focus on the tax system with ts = 0.

Lemma 2 and 3 in Online Appendix OB.1 establishes a relaxed planner’s problem, where the original

incentive conditions are replaced by first-order incentive conditions. To this end, the planner now chooses

the variables {cw(qw), lw (qw) , ce(qe), Lw(qe), le (qe)}qe2Qe,qw2Qw
to maximize the social welfare (5), subject to

the incentive conditions (26) and (29), where the inverse demand function satisfies (15); the market clear

conditions (12) to (14); and condition (16) with ts = 0. Condition (16) can be treated as a policy constraint in

the planner’s problem. Essentially, it requires that the marginal revenue of labor inputs:

v (qe) ⌘
∂
⇥
Pij (qe) Qij (qe)

⇤

∂Lw,ij (qe)
(30)

to be equal for firms, qe 2 Qe. The uniform-sales-tax policy constraint thus can be rewritten as d ln v(qe)
dqe

= 0.

Last, it turns out to be easier if we take Vo (qo) instead of co(qo) as the variable of the planner’s problem.

After solving for the planner’s problem, we can construct the price system and tax system by the FOCs.

4.3 Useful Concepts

Tax Wedges Marginal distortions of taxes in agents’ choices can be described with wedges. Entrepreneurs

have three possible choices (consumption, effort, and hiring workers), while workers have two possible

choices (consumption and working hours). In total, there are three tax wedges: (i) the tax wedge ts (qe)
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between the marginal cost and marginal income of labor inputs Lw (qe), (ii) the tax wedge tw(qw) between

the marginal disutility and income of the labor supply lw, and (iii) the tax wedge te(qe) between the marginal

disutility and income of the entrepreneur’s labor supply le. Specifically, we shall define the three types of

tax wedges as:

ts (qe) = 1 � W
∂[Pij(qe)Qij(qe)]

∂Lw,ij(qe)

, tw (qw) = 1 � f0
w (lw (qw))
Wxw (qw)

, te (qe) = 1 � f0
e (le (qe))

∂[Pij(qe)Qij(qe)]
∂le,ij(qe)

. (31)

They are determined by the taxes. From the FOCs (15) - (18), we obtain ts (·) = ts, tw (qw) = T0
w (yw (qw))

and te (qe) = 1 � (1 � ts) [1 � T0
e (ye (qe))]. Note that due to the policy constraint (the government cannot

levy firm-specific or non-linear sales tax), ts (qe) in our benchmark model is restricted to be uniform. In the

model extension, we will loosen the policy constraint to provide a second-best optimum as a comparison.

As is known from the optimal tax literature, generally there are multiple tax systems that can implement

the second-best allocation (see e.g., Chari and Kehoe (1999); Golosov et al. (2003)). In our model, as long

as ts (qe) is restricted to be uniform and income taxes are free, there is no need to enforce the sales taxes in

addition to the direct taxes. Also note that, as long as ts (·) is uniform, one can replace the sales tax by a

consumptions tax, which suggests that the uniform sales tax should not be treated as a tax beared by the

firm, but a uniform tax on the labor factors and entrepreneurial efforts. Without loss of generality, we set ts

at zero. Then tw (·) and te (·) capture the effective tax rates on lw (·) and le (·), respectively.

Income Elasticity. Set #
yw
1�tw

(qe) = 1
1+1/#w

d ln yw(q)
d ln xw(qw)

as the non-linear elasticity of labor income, which is

familar from the optimal income tax literature (see e.g., Sachs et al. (2020)). As to the elasticity of profit,

consider a marginal increase (i.e., dt) of the marginal tax rate faced by the qe-type entrepreneur. The tax

reform has no first-order effects on the aggregate values. As in Scheuer and Werning (2017), the elasticity

derived here is a micro elasticity. The entrepreneur treats the others’ action as given, and react to the tax

reform rationally. Define #
ye
1�te

(qe) ⌘ � dye(qe)
ye(qe)

/ dt
1�T0

e(ye(qe))
as the non-linear profit elasticity. We have the

following result:

#
ye
1�te

(qe) =
1

1+#e
#e

[µ (qe)� x]�
h
1 � ye(qe)T00

e (ye(qe))
1�T0

e(ye(qe))

i .

See Appendix A.2.2 for the details about the elasticity of profit.

Use the supscript o to denote variables in the Laissez-faire economy. Denote by yo
e : Qe 7! R+ the profit

in the Laissez-faire economy. Denote by

#
yo

e
1�te

(qe) =
1

1+#e
#e

[µ (qe)� x]� 1
(32)

the elasticity of profit in the Laissez-faire economy. #
yo

e
1�te

(qe) can be observed as long as #
ye
1�te

(qe) and the

progressivity of profit tax ye(qe)T00
e (ye(qe))

1�T0
e(ye(qe))

are observable.

Hazard Ratio. Denote by Fo
ye : R+ 7! R+ the CDF of profit in the Laissez-faire economy. f o

ye (y
o
e) = Fo0

ye (y
o
e)

is the PDF. Set

H(qe) ⌘
1 � Fo

ye (y
o
e (qe))

f o
ye (yo

e (qe))
=

d ln yo
e (qe)

dqe

1 � Fe(qe)
fe (qe)
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as the hazard ratio of profit in the Laissez-faire economy. The real hazard ratio 1�Fye (ye(qe))
fye (ye(qe))

is determined

by H(qe) and the progressivity of profit tax (see equations (OA23) to (OA25)). Therefore, H(qe), as well as
d ln yo

e (qe)
dqe

, can be observed by the real profit distribution. In particular, when the profit tax in the real economy

is linear around qe, H(qe) =
1�Fye (ye(qe))

fye (ye(qe))
.

Skill Gap. At the heart of the canonical Mirleesian optimal taxation problem, is the term x0w(qw)
xw(qw)

, which is a

measure of the skill gap and captures how the worker’s skill varies along the type distribution. The equiv-

alent to x0w(qw)
xw(qw)

for the entrepreneur is the term g0
e(qe)

ge(qe)
, i.e. the skill gap that captures how the entrepreneur’s

skill varies along the type distribution. This term is derived in equation (OA24) and is a crucial element for

the optimal tax formula:

g0
e (qe)

ge (qe)
⌘


k
d ln Xe(qe)

dqe
� k

d ln µ (qe)
dqe

+
d ln [µ (qe)� x]

dqe

� 
µ (qe)� x � #e

1 + #e

�
, (33)

where k =
s

s�1
1+#e

#e
1+#e

#e ( s
s�1�x)�1

. Given preferences and technology, the skill gap for the entrepreneur is no only

determined by the composite ability Xe(qe), but also by the markup µ (qe). When markets are competitive

and µ (qe) = 1, g0
e(qe)

ge(qe)
equals d ln Xe(qe)

dqe
multiplied by a constant. It is worth noting that the last term in the

right hand side of (33), i.e., µ (qe) � x � #e
1+#e

, is the inverse of #
yo

e
1�te

(qe) multiplied by #e
1+#e

. Rising market

power affects the skill gap through multiple channels, one of the most important channels is via a reduction

in the profit elasticity through an increase in µ (qe).

Social Welfare Weights. We now introduce shorthand notation for the social welfare weights and useful

elasticities. We denote go(qo) and ḡo(qo) as the marginal and weighted social welfare weights:

go(qo) ⌘
G0(Vo(qo)) efo (qo)

l fo (qo)
and ḡo(qo) ⌘

R qo
qo

g(x) efo (x) dx
1 � Fo(qo)

, (34)

where l =
R

qo
G0(Vo(qo)) efo(qo)dqo is the shadow price of government revenue.

5 Main Results
We now analyze the properties of the economy that we have laid out under optimal taxation by the planner

to solve for the benchmark model. We start by enunciating the most general result on the tax formula

in section 5.1. Because of the complexity of the expression of the main result, we then show a series of

results that pertain to special cases in section 5.2: (i) homogeneous agents, (ii) monopolistic competition

(I = 1), (iii) oligopolistic competition with uniform markups (µ (qe) = µ), and (iv) the general case of

oligopolistic competition with heterogeneous markups. Each of these special cases gradually reveal the

different components of the optimal tax wedges.

5.1 General Tax Formulas

The framework of this article is applicable to general, non-parametric technological specifications. In Online

Appendix OC.3, we provide statistic-based optimal tax formulas which do not depend on specific technolo-
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gies (see e.g., Theorem OC1). For analytical reasons, we now provide a parameter-based optimal taxation in

the Atkeson-Burstein economy. It shows how the optimal profit income tax deviate from the optimal labor

income tax due to market power.

Theorem 1 For any qw 2 Qw and qe 2 Qe, the optimal tax wedges satisfy the following equations in the Atkeson-
Burstein economy:

1
1 � tw (qw)

=
1
µ


1 + [1 � ḡw(qw)]

1 � Fw(qw)
fw(qw)

x0w (qw)
xw (qw)

1 + #w

#w

�
, (35)

1
1 � te (qe)

=

1
µ(qe)

h
1 + [1 � ḡe(qe)]

1�Fe(qe)
fe (qe)

g0
e(qe)

ge(qe)
1+#e

#e

i
+

s
s�1
s

s�1�x IRE (qe)

1 � x
s

s�1�x RE (qe)
. (36)

where the Reallocation Effect RE (qe) and Indirect Redistribution Effect IRE (qe) are given by:

RE (qe) ⌘
µ

µ (qe)
� 1, (37)

IRE (qe) ⌘ #P,cross
Q�ij

(qe) {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)} . (38)

The aggregate markup is µ =
R

qe
µ (qe)w (qe) dqe, with w (qe) =

Lw(qe) fe(qe)R
qe Lw(qe) fe(qe)dqe

:

w (qe) =


[1 � te (qe)]

⇣
Xe(qe)
µ(qe)

⌘ 1+#e
#e

s
s�1
� 1

1+#e
#e ( s

s�1 �x)�1
fe (qe)

R
qe


[1 � te (qe)]

⇣
Xe(qe)
µ(qe)

⌘ 1+#e
#e

s
s�1
� 1

1+#e
#e ( s

s�1 �x)�1
fe (qe) dqe

. (39)

Proof. See Appendix B.3.

Two things are worth noting here. First, equations (35), (36), together with the weights for firm-level

markups, i.e., (equation 39), describe the optimal taxation as a solution to an integral equation. As an

illustration, in Online Appendix OC.1, we solve the optimal tax rate explicitly for specific parameters (see

Corollary 2). Second, the firm-level markup serves as a sufficient statistic capturing the influence of the

market structure I and the elasticity of substitution h (qe). That is I and h (qe) only affect the optimal tax

formulas and the equilibrium conditions via µ (qe). The general tax formula can be decomposed into four

elements, each of which is defined so that the tax rates increase in the element:

Mirrleesian Part. When the goods market is competitive, the tax rules reduce to the traditional Mirrleesian

tax formulas. That is to (qo) = tM
o (qo), and

tM
w (qw)

1 � tM
w (qw)

= [1 � ḡw(qw)]
1 � Fw(qw)

fw(qw)
x0w (qw)
xw (qw)

1 + #w

#w
, (40)

tM
e (qe)

1 � tM
e (qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
g0

e (qe)
ge (qe)

1 + #e

#e
.

We call tM
o (qo)

1�tM
o (qo)

the Mirrleesian part of optimal taxation, and it captures the trade-off between the direct

redistribution and revenue effects of the profit tax.

One core component of the Mirrleesian part is the skill gap g0
e(qe)

ge(qe)
. Rising market power affects the optimal
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profit tax through multiple channels, the most important of which is increasing or decreasing the Mirrleesian

part by raising or reducing g0
e(qe)

ge(qe)
. In the quantative analysis below, we show that the observed change in

markups increases the top profit tax rate by increasing g0
e(qe)

ge(qe)
.

Pigouvian Part. The explicit impact of market power is illustrated with the appearance of the reciprocal

of the markup, i.e., 1
µ and 1

µ(qe)
. We call 1

µ and 1
µ(qe)

the Pigouvian part for labor income tax and profit tax,

respectively. A noteworthy aspect is that the optimal tax rate depends on the employment-weighted average

markup instead of other aggregate markups. The employment-weighted average markup is generally larger

than the unweighted average markup because it assigns a higher weight to large firms that have higher

markups. In addition, the change in the employment-weighted average markup is also larger than the

change in unweighted average markup if the changes in markups mainly come from large firms. Moreover,

the reallocation effect, RE (qe) =
µ

µ(qe)
� 1, of low skill segments is larger than the effect using the unweighted

mean, while the reallocation effect of high skill segments tends to be be smaller.

Reallocation Effect and Indirect Redistribution Effect. In Theorem 1, we also have the reallocation effect
and indirect redistribution effect, which together with the Pigouvian and Mirrleesian parts describe the optimal

tax rates:

(i) The term RE (qe) captures the reallocation effect of taxes. Introducing RE (qe) increases the optimal

tax rate if and only if µ (qe) < µ. Otherwise, it decreases the optimal tax rate. This is because the

labor demand of a high-markup firm is inefficiently lower than that of a low-markup firm. Thus,

interventions in the product market should reallocate labor factors to the high-markup firms.

(ii) The term IRE (qe) captures the indirect redistribution effect of the profit tax. It contains two redis-

tribution effects caused by a percentage change in Q�ij(qe): a local redistribution effect captured by

#P,cross
Q�ij

(qe) [1 � ge(qe)] and a cumulative redistribution effect #P,cross
Q�ij

(qe) [1 � ḡe(qe)] H(qe).

Depending on the distribution of skills and social welfare weights the indirect redistribution effect may

either increase or decrease the optimal tax rate. As an illustration to the indirect redistribution effect, con-

sider a decrease in te (qe). Such a tax reform increases the output of firms in submarket qe (i.e., Q�ij(qe)

increases), which in turn decreases the price of products in qe submarket. A decrease of P (qe) reduces

the after-tax income of the qe entrepreneur, which promotes redistribution if ge(qe) < 1. However, to

keep the entrepreneurial effort unchanged after the decrease of price,23 te (qe) should decrease further.

This decrease in te (qe) triggers a cumulative indirect redistribution effect because the tax liability of all

entrepreneurs with ability higher than qe decreases. Such a a cumulative indirect redistribution effect hin-

ders the enhancement of welfare because ḡe(qe)  1. In the end, suppose ge(qe) is small enough such that

[1 � ge(qe)]� [1 � ḡe(qe)] H(qe) > 0, the indirect redistribution effect IRE (qe) will reduce te (qe). Otherwise,

it increases te (qe).

In summary, even without considering changes in social welfare weights, the impact of rising market

power and uneven market power on the optimal tax rate is ambiguous. Next, we analyze the impact of

changes in market power on the optimal tax rate.

23Note that the indirect redistribution is the influence of changes in price, and therefore should maintain the effort unchanged.
The influence of tax on effort is captured by the traditional parts.
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5.2 Market Structure and Optimal Taxation

We now study the impact of market structure on tax design. We gradually adjust the number of firms and

evaluate the effect on the equilibrium outcome and the optimal tax.

(i) Homogeneous Agents To make the results more transparent, we first analyze the optimal taxation for-

mulas when workers and entrepreneurs are homogeneous. As is in Akcigit et al. (2016), without asymmetric

information, the government can achieve the first best and correct the externality by Pigovian taxes.

Proposition 3 When worker and entrepreneur types are homogeneous, the optimal tax wedges satisfy the following:
tw = te = 1 � µ. (41)

Proof. In this case, ḡo = go = 1, and the optimal tax formulas (35) and (36) simplify to (41).

The tax wedge here plays the exclusive role of a Pigouvian tax. When agents are identical, the incen-

tive constraints are muted because they are trivially satisfied. The only role the planner bestows on the

tax wedges is to correct the externality or markup distortion. As a result, the optimal tax wedge, which is

negative, exactly offsets the distortion due to the markup. This may seem surprising, but to counteract the

externality from market power, the planner subsidizes entrepreneurs and workers in order to increase out-

put. Note that Proposition 3 holds irrespective of the number of competitors I in each market and includes

cases of both monopolistic and oligopolistic competition. Of course, the exact value of µ depends on the

number of firms I.

(ii) Monopolistic Competition We now turn to an economy without strategic interaction within each mar-

ket j, that is, with a monopolistic producer in each market where I = 1. In this case, it follows that markups

are identical and equal to: µ = s
s�1 . Under the monopolistic competition with uniform markups, the solu-

tion to the planner’s problem yields the following optimal tax rules:

Proposition 4 When I = 1 the optimal profit tax can be simplified as: 24

1
1 � te (qe)

=
1 + [1 � ḡe(qe)]

1+#e
#e

1�Fe(qe)
fe(qe)

h
µ c0(qe)

c(qe)
+ x0e(qe)

xe(qe)

i

µ
. (42)

Proof. Ommited.25

Two things are worth noting. First, the Pigouvian part in the profit tax now corresponds to the Pigouvian

part in the labor income tax, because the firm-level markups are uniform and equal to the average markup.

Second, the after-tax retention rate of labor income may increase relative to the after-tax retention rate of

profit. To see this, note that:
1 � tw (qw)
1 � te (qe)

=
1 + [1 � ḡe(qe)]

1+#e
#e

1�Fe(qe)
fe(qe)

h
µ c0(qe)

c(qe)
+ x0e(qe)

xe(qe)

i

1 + [1 � ḡw(qw)]
1+#w

#w

1�Fw(qw)
fw (qw)

x0w(qw)
xw(qw)

.

The term 1�tw(qw)
1�te(qe)

increases in µ if the distribution parameter increases in the skill, i.e., c0(qe)
c(qe)

> 0. In this case

the markup is determined by the elasticity of substitution between markets s. So the increase of 1�tw(qw)
1�te(qe)

in

markups means that 1�tw(qw)
1�te(qe)

increases as the elasticity of substitution elasticity between goods decreases.

24Note that when I = 1, one has µ c0(qe)
c(qe)

+ x0
e(qe)

xe(qe)
= µ X0(qe)

X(qe)
, because µ = s

s�1 . Therefore, we have another form of equation (42):

1
1�te(qe)

=
1+[1�ḡe(qe)]

1+#e
#e

1�Fe (qe )
fe (qe )

µ X0 (qe )
X(qe )

µ , 8qe 2 Qe. This finding again suggests that the optimal tax rate is irrelevant to the specific
composition of X(qe).

25When I = 1, one has µ (qe) = µ and #P,cross
Q�ij

(qe) = 0. In this case, equation (36)) reduces to (42).
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Note also that µ c0(qe)
c(qe)

+ x0e(qe)
xe(qe)

= X0
e(qe)

Xe(qe)
, which means the optimal profit tax is determined by the composite

ability and not xe (qe) and c (qe) individually.

(iii) Oligopolistic Competition with Uniform Markups In the previous two cases, the span of control

x has no influence on te (qe). This is not so under oligopolistic competition. We now consider cases with

I > 1 but still restrict the markup to be uniform. That is, h (qe) is constant. This setting introduces inter-

firm strategic action but still abstracts from the effect of markup inequality between firms. A planner who

intends to take advantage of the general equilibrium price effect and ease the incentive constraint would

like to decrease the relative price of goods produced by high-skilled entrepreneurs. However, whether the

planner should encourage the factor inputs of high-skilled entrepreneurs remains ambiguous because there

are two opposing forces. On the one hand, raising the labor inputs of competitors in the same submarket

reduces the relative price of goods in the submarket; on the other hand, raising the labor inputs increases

entrepreneurial effort’s marginal productivity.

Proposition 5 Let h (q) = h be constant. Then result (i) below holds. In addition, let the social welfare weights be
exogenous, then also results (ii) and (iii) hold:

(i) For any qe 2 Qe, the optimal profit tax wedge satisfies:

1
1 � te (qe)

=

1 + [1 � ḡe(qe)] H(qe) 1
#

yoe
1�te

µ
+

s
s�1

s
s�1 � x

IRE (qe) , (43)

where #
yo

e
1�te

= 1
1+#e

#e (µ�x)�1
.

(ii) For any qe 2 Qe, te (qe) increases in µ iff

ge(qe) <
x (s � 1)

s

"
1 + [1 � ḡe(qe)] H(qe)

1
#

yo
e

1�te

#
. (44)

1�tw(qw)
1�te(qe)

increases in µ iff

ge(qe) < 1 + [1 � ḡe(qe)] H(qe)
1

#
yo

e
1�te

. (45)

(iii) In particular, 1�tw(qw)
1�te(qe)

increases in µ if ge(qe) < 1 and te (qe) increases in µ if ḡe(qe) = ge(qe)  x(s�1)
s .

Proof. See Online Appendix OC.7.

Part (i) of Proposition 5 provides an optimal profit tax formula, which is explicit when the social welfare

weights are exogenous. Compared to the tax formula under monopolistic competition (42), there is now an

additional term, i.e.,
s

s�1
s

s�1�x IRE (qe), which captures the indirect redistribution effect of the profit tax.

As is illustrated before, IRE (qe) is the indirect redistribution effect of changing Qij (qe). We now illus-

trate what’s
s

s�1
s

s�1�x . It is the percentage change of Qij (qe) with one percentage increase of le(qe). To see this,

note that one percentage increase of le(qe) induces one percentage increase of Qij (qe). Then, the labor de-

mand Lw(qe) will increase proportionally by �x
#v

le (qe)

#v
Lw (qe)

percent which renders the marginal productivity of

Lw between firms uniform, where #v
le (qe) and #v

Lw
(qe) are the elasticities of productivity v(qe) with respect
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to le(qe) and Lw(qe). This crowding in effect of le(qe) on Lw(qe) induces the �x
#v

le (qe)

#v
Lw (qe)

percentage change in

Qij (qe). In sum, one percentage increase of le(qe) triggers 1 � x
#v

le (qe)

#v
Lw (qe)

=
s

s�1
s

s�1�x > 1 percentage increase of

Qij (qe), and
s

s�1
s

s�1�x IRE (qe) is the total indirect redistribution effect bringed by the increase of le(qe).

The literature has pointed out that the indirect redistribution effect generally makes the top tax rate

lower (see e.g., Stiglitz (1982) and Rothschild and Scheuer (2013)).26 To see this, suppose the social welfare

weights are exogenous and the government has a preference for equality, where ge(qe) and ḡe(qe) approach

zero when qe ! qe. Notice that in our oligopolistic competition with h (q) = h, #P,cross
Q�ij

(qe)  0 is constant.

As qe ! qe, IRE (qe) approaches #P,cross
Q�ij

(qe) [1 � H(qe)], which is negative if H(qe) < 1. The indirect redis-

tribution effect generally requires a lower profit tax rate for high-skilled entrepreneurs in the United States,

because for qe large enough it is empirically true that H(qe) < 1.27

Part (ii) of Proposition 5 provides a condition under which 1�tw(qw)
1�te(qe)

increases in µ. We find that 1�tw(qw)
1�te(qe)

increases in µ if ge(qe) < 1, where the shadow price of government revenue is essentially 1. Part (iii) of

Proposition 5 suggests that under reasonable H(qe), the top profit tax rate will increase with the rise of

market power when ge(qe) for the top is constant (so that for qe large enough, ḡe(qe) is also constant and

ḡe(qe) = ge(qe)) and low enough.

The above findings indicate that without considering market power inequality, the optimal profit tax

rates for the top firms will increase with the rising markup.

(iv) Oligopolistic Competition with Heterogeneous Markups. Finally, we get to the full-blown tax for-

mulas with both oligopolistic competition and heterogeneous markups from Theorem 1. For the work-

ers, the tax formula (35) remains unchanged compared to the case with uniform markups. As for the en-

trepreneurs, now the planner can use the tax to implement an efficiency-enhancing reallocation of factors,

which is captured by the denominator on the right side of (36), i.e., 1 � RE (qe)
x

s
s�1�x = 1 � µ�µ(qe)

µ(qe)
x

s
s�1�x .

To understand the reallocation effect, we introduce two elasticities. Denote #v
Lw
(qe) ⌘ ∂ ln v(qe)

∂ ln Lw(qe)
and

#v
le (q) ⌘ ∂ ln v(qe)

∂ ln le(qe)
as the own elasticities of wage with respect to labor inputs and effort. In the Atkeson-

Burstein economy, #v
Lw
(qe) = x s�1

s � 1 and #v
le (qe) = s�1

s (see Appendix A.2.2).

Notice that 1
s

s�1�x = � #v
le (qe)

#v
Lw (qe)

is the percentage increase in Lw(qe) needed to render the marginal produc-

tivities of labor inputs (v (qe)) between firms uniform when le(qe) is increased by one percent. x
s

s�1�x is the

percentage increase in Qij with one percentage increase in Lw,ij.

The increase of Lw(qe) comes from the reallocation of Lw at other firms. The influence of such a realloca-

tion on the aggregate output is captured by µ(qe)�µ
µ(qe)

, where

[µ (qe)� µ]W = µ (qe)W �
Z

qe

P
�
q0e
� ∂Qij (q0e)

∂Lw (q0e)
Lw (q0e) fe (q0e)R

Lw (qe) fe (qe) dqe
dq0e

is the increase in total output by reallocating Lw(q0e)R
Lw(qe) fe(qe)dqe

units of labor factors from each of q0e-type firms

to the qe-type firm. To see this, remember that µ =
R

qe
µ (q0e)

Lw(q0e) fe(q0e)R
Lw(qe) fe(qe)dqe

dq0e, where µ (q0e)W = P (q0e)
∂Qij(q0e)
∂Lw(q0e)

is the marginal output of Lw (q0e). Last, µ(qe)�µ
µ(qe)

= [µ(qe)�µ]W

P(qe)
∂Qij(qe)
∂Lw(qe)

is the value of the increased output in terms

26Rothschild and Scheuer (2013) develop the notion of a so-called self-confirming policy equilibrium, used by Rothschild and
Scheuer (2016), to illustrate the potential influence of neglecting the endogeneity of wages, therefore, the IRE.

27In 2007, the hazard ratio of top labor, capital, and total incomes in the United States are around 0.62, 0.76 and 0.71, respectively
(see e.g., Saez and Stantcheva (2018)).

20



of Lw (qe). Notice that 1 � RE (qe)
x

s
s�1�x = 1 � µ�µ(qe)

µ(qe)
x

s
s�1�x , where 1 =

∂ ln Qij(qe)
∂ ln le(qe)

and x =
∂ ln Qij(qe)
∂ ln Lw(qe)

. 1 �
RE (qe)

x
s

s�1�x is exactually the output that increased with one percent increase of le(qe) and the resulting

inter-firm reallocation of labor factors.

Our optimal tax formula suggests that, given the social welfare weights, with a marginal increase of the

firm-level markup, the reallocation effect requires a lower tax rate on the firm with a markup higher than

the average markup.28 The above finding also provides a novel explanation (i.e., markup inequality) for

why the profit tax in the real economy is less progressive (or not progressive at all) than the labor income tax

(see e.g., Scheuer (2014)). It is worth noting here is that rising markup inequality not necessarily decreases

the optimal profit tax rate. In fact, it depends on the rate at which the firms’ markup increases compared to

the average markup. When the growth rate of a firm’s markup is faster than the average markup, changes

in the reallocation effect often require a reduction in the firm’s marginal profit tax rate.

5.3 Summary of Results

There are four elements determining the optimal profit tax rate, in addition to the social welfare weights. The

Mirrleesian part reflects the trade-off between direct redistribution and the revenue effect of profit tax. The

Pigouvian part restores the productive efficiency by offsetting the externality of labor supply. Meanwhile,

the reallocation effect reduces the tax rate for entrepreneurs with relatively high markups in order to reduce

the misallocation of labor inputs. Last, the indirect redistribution effect captures tax’s redistribution effect

through prices.

These four parts suggest that changes in market power has an amalgam of different, often opposing

forces on the optimal profit tax rate. As an illustration, consider the increase of µ (qe) in the Atkeson-Burstein

economy:

1. Immediately, the Pigouvian part 1
µ(qe)

decreases to reduce the tax rate.

2. The reallocation effect RE (qe) =
µ

µ(qe)
� 1 decreases if the firm-level markup µ (qe) increases as relative

to the average markup.

3. The indirect redistribution effect, i.e., IRE (qe) = #P,cross
Q�ij

(qe) {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}, may

either increase or decrease. The cross-inverse demand elasticity #P,cross
Q�ij

(qe) = � 1
µ(qe)

+ s�1
s increases

with the increase of µ (qe). However, [1 � ge(qe)]� [1 � ḡe(qe)] H(qe) may either be positive or negative

(it is generally negative for the poor and positive for the rich).

4. Last, the core of Mirrleesian part – the skill gap g0
e(qe)

ge(qe)
– generally increases because #

yo
e

1�te
(qe) =

1
µ(qe)�x� #e

1+#e
decreases (see equation (33)).

In conclusion, our theoretical analysis identifies the different forces behind the effect of market power on

the profit tax rate, especially for the top firms. To evaluate the net effect as well as the contribution of each

individual force, below in Section 7 we perform a full quantitative exercise based on US micro-data in order

to provide a policy prescription how the the tax authorities should react to the change in market power that

we observe since the 1980s. We then establish the robustness of our main findings.

28Since there is no use to set a marginal tax rate larger than one, the right side of (36) is positive. Supposing te (qe) < 1, the
numerator of the right side of (36) is positive if the denominator 1 � x

s
s�1 �x RE (qe) > 0, which is true because µ < s

s�1 .
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6 Discussion, Policy-relevant Specifications and Robustness
In section 6.1, we discuss how our study relates to the literature. In section 6.2 we consider alternative

specifications that are relevant for policy. In the Appendix C we discuss further Extensions and Robustness

of our model setup and results.

6.1 Relation to the Literature

First, we review the literature on which our work builds. Then we enter into further detail of the analytic

of the model to expand on the comparison with key results in the literature. Starting with Mirrlees (1971),

an extensive and influential literature on optimal taxation has analyzed what determines the properties of

income tax schedules. Within this literature, our paper speaks to three strands: (i) market power and optimal

policies; (ii) endogenous price (wage) and optimal taxation; and (iii) entrepreneurship and optimal taxation.

Our paper is further also related to the literature on externalities and optimal taxation, and to the literature

on technology and optimal taxation.

In recent years, there is a growing policy literature on the relation between markups and inequality

(see e.g., Stiglitz (2012); Atkinson (2015); Baker and Salop (2015); Khan and Vaheesan (2017)). This paper

differs from existing research in several aspects. First, existing papers generally consider representative

agents. These papers abstract from distributional concerns and focus on indirect taxes (see Stern (1987);

Myles (1989); Cremer and Thisse (1994); Anderson et al. (2001); Colciago (2016); Atesagaoglu and Yazici

(2021)). They assume that a lump-sum tax is not enforceable and study how can the government raise

revenue efficiently. In a recent paper, Atesagaoglu and Yazici (2021) analyze the effect of optimal taxation on

the labor share in a Ramsey problem with capital. They ask a different but related question, namely whether

it is optimal to tax capital rather than labor when there is pure profit and the planner cannot distinguish

capital income from profits. We study optimal taxation in the spirit of Mirrleesian taxations and consider

indirect as well as direct taxes. Therefore, our approach highlights the trade-off between efficiency and

equality in tax system design.

Second, for those papers considering redistribution in the presence of market power, the equilibrium of-

ten considered is monopolistic competition (see e.g., Gürer (2021) and Boar and Midrigan (2021)), or where

markups are exogenous (see e.g., Kaplow (2019)). These studies miss out on the impact of market structure

on tax systems. In our Atkeson and Burstein (2008) economy, there are a finite number of oligopolistic firms

that have market power in their local market.29 This setting allows us to model the influence of the mar-

ket structure on the optimal design of the tax system, which is mostly absent in the literature. Our results

lay bare the impact of market structure on the direct and indirect redistribution, as well as the capacity of

taxation to promote production. The role of the market structure is not merely a theoretical frivolity. It is

important for the overall conclusion and for the concrete policy prescription. While the reallocation effect

(RE) is a force towards more concentration, the direct redistribution effect (Mirrleesian part) counteracts this

force and calls for policies that lead to less concentration and lower market power. The indirect redistribu-

tion effect (IRE) calls for less progressive policies that lead to more concentration and lower market power.

In models with monopolistic competition, the IRE and RE is absent (because of zero cross-wage elasticity

and uniform markups), leading to the conclusion that policymakers should broker more concentrated mar-

29In our setup, we have a nested CES structure in inputs of production, instead of in preferences over consumption goods.
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kets to benefit redistribution towards the poor. This is not so with oligopolistic competition, and in the

quantitative exercise we find that policymakers want to implement higher, but less regressive profit taxes,

in order to promote the production while enhancing redistribution.

When considering oligopolistic markets, current studies generally do not consider profit tax design and

strategic pricing (see e.g., Kushnir and Zubrickas (2019) and Jaravel and Olivi (2019)). The profits received

by the agents in these papers are taken as given. Thus, even if the profit tax is introduced in their models, it

acts as lump-sum taxes. In contrast, we introduce entrepreneurs, and entrust the pricing behavior to these

agents. The technology that an entrepreneur employs is as in Lucas (1978), where a skilled entrepreneur

chooses the optimal amount of labor as an input to produce output. Unlike Lucas (1978), the entrepreneur

has market power and chooses prices strategically when reporting their types. Therefore, the presence

of market power in the principal-agent problem is notably distinct from the existing literature on optimal

taxation and market power. In doing so, our paper also reveals the influence of market power on tax design

through shaping the skill gap of entrepreneurs.

Most contributions to the secondary literature on endogenous price (wage) and optimal taxation consid-

ers competitive market (see e.g., Stiglitz (1982); Naito (1999) and Naito (2004); Saez (2004); Scheuer (2014);

Sachs et al. (2020); Cui et al. (2021)). This literature emphasizes the general equilibrium effect of taxes on

factor prices, which brings an indirect redistribution between agents providing different factors. We show

that the indirect redistribution effect crucially depends on the market structure. Lowering the profit tax en-

courages entrepreneurial effort and output, thereby decreasing the price of the competitor’s product which

leads to the indirect redistribution. Interestingly, when there is no competitor in the submarket, i.e., under

monopolistic competition, this effect disappears, because the entrepreneur’s monopoly price-setting action

eliminates the tax policy’s first-order effect on the price. In the case of oligopoly, only part of the indirect

redistributive effect is offset by the pricing behavior of entrepreneurs. Observe the difference between the in-

tuitions for the indirect redistribution effects under monopolistic competition and the perfectly competitive

case as in Rothschild and Scheuer (2013). This does get more subtle under oligopolistic competition.

A third stream of research works on entrepreneurship and optimal taxation (see e.g., Scheuer (2014);

Ales and Sleet (2016), Ales et al. (2017); Scheuer and Werning (2017)). Within this setting, Boar and Midrigan

(2021) is the only paper that also introduces market power. They consider an alternative incentive problem

between the planner and the entrepreneur where a profit tax does not affect the entrepreneur’s incentive

constraint. As a result, their optimal policy prescription is quantity regulation instead of a profit tax. In

addition, we consider different production technologies and market structures. The source of market power

in our model is the number of firms that are in oligopolistic competition, instead of preferences, which in

their setting works via the Kimball aggregator under monopolistic competition.

These different modeling choices have novel implications for policy. Market power affects the optimal

policy not only through the Pigouvian channel, but also the Mirrleesian channel. More interestingly, the

Mirrleesian channel leads to an increase of the marginal tax rate as markups increase. This is at the heart of

the role that Mirrleesian taxes play as opposing forces of Pigouvian taxes.

In addition to the three streams of literature above, our paper also contributes to the literature on optimal

taxation and technology (see e.g., Ales et al. (2015); Scheuer and Werning (2017); Costinot and Werning
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(2023)). Scheuer and Werning (2017) find that the parametric optimal tax rate is independent of the span

of control (the curvature of firm-level production with respect to labor inputs). Our results show that their

findings extend to the monopolistically competitive economy. However, we find that in the oligopolistic

economy, the span of control enters the parametric tax rule by enlarging the indirect redistribution effect.

Lastly, our paper is also related to the literature on optimal taxation in the presence of externalities (e.g.,

Sandmo (1975); Ng (1980); Bovenberg and van der Ploeg (1994); Kopczuk (2003); Farhi and Gabaix (2020)).

As suggested by Kopczuk (2003), one striking finding of this literature is the “additivity property”:30 Opti-

mal taxation in the presence externalities can be expressed additively by some Pigouvian taxes. However,

we find that the additivity property generally does not hold in an economy where agents have heteroge-

neous market powers because of the reallocation effect.

6.2 Policy-relevant Specifications

We now consider alternative specifications that are relevant to put our results in perspective concerning

concrete tax policy prescriptions.31

(i) Second-Best: Non-linear Sales Taxes. As we have emphasized before and considering the practi-

cality of the tax system, our benchmark model is constrained to linear sales taxes and therefore corre-

sponds to the planner’s third-best solution. A comparison between the second- and third-best solutions

is nonetheless useful for illustrating the influence of this policy constraint on the optimal profit tax. Set

tE
w (qw), tE

e (qe) and tE
s (qe) as the marginal labor income tax rate, profit tax rate, and non-linear sales in-

come tax rate, respectively. By the definitions of tax wedges, tw (qw) = tE
w (qw), ts (qe) = tE

s (qe) and

1 � te (qe) =
⇥
1 � tE

e (qe)
⇤ ⇥

1 � tE
s (qe)

⇤
. See Online Appendix OC.5.3 for additional explicit expressions

for the tax wedges. Analogous to Theorem 1, Theorem 2 provides the most general result on the optimal tax

formula in this extension with non-linear sales taxes.

Theorem 2 The optimal tax rates in the second-best problem satisfy the following:

1
1 � tE

w (qw)
=

1 + [1 � ḡw(qw)]
1�Fw(qw)

fw(qw)
x0w(qw)
xw(qw)

1+#w
#w

µ⇤ ,

1
1 � tE

e (qe)
=

1 + [1 � ḡe(qe)] H(qe)
h
[µ (qe)� x] 1+#e

#e
� 1
i

µ⇤ +

[1 � ḡe(qe)]
1�Fe(qe)

fe(qe)

2

64 d ln[µ(qe)�x]
dqe

+
µ(qe)#

P,cross
Q�ij

(qe)(1+x 1+#e
#e )

"
d ln[1�tEs (qe)]

dqe +
d ln[1�tEe (qe)]

dqe

#

1� s�1
s ( #e

1+#e +x)

3

75

µ⇤ ,

tE
s (qe)

1 � tE
s (qe)

=


µ⇤

µ (qe)
� 1
�
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe) {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}

+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe)
[1 � ḡe(qe)] [1 � Fe(qe)]

fe (qe)

2

6664

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe
� d ln[µ(qe)�x]

dqe

+
d ln[1�tEs (qe)]

dqe +(1�x s�1
s )

d ln[1�tEe (qe)]
dqe

1� s�1
s ( #e

1+#e +x)

3

7775
,

30The additivity property can be treated as a special case of the “principle of targeting“proposed by Dixit (1985).
31To facilitate the analysis, in this section we assume that the relevant monotonicity hypothesis of the incentive problem are

always tenable and we can rely on the first-order approach.
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where µ⇤ ⌘
R

qe

µ(qe)
1�tE

s (qe)
w (qe) dqe is the optimal after-tax average markup.

Proof. See Online Appendix OC.5.

µ⇤ is a generalized average markup. Intuitively, µ(qe)
1�tE

s (qe)
is the markup after tax and µ⇤ is the weighted

average of the after-tax markup. In line with our benchmark model, µ⇤ is reduced to µ when the sales tax

is zero. Given µ⇤ and social welfare weights, the expressions for tE
e (qe) and tE

s (qe) consists of a system of

differential equations. These equations together with the boundary conditions 1
1�tE

e (qe)
= 1

µ⇤ and tE
s (qe)

1�tE
s (qe)

=
h

µ⇤

µ(qe)
� 1
i
+ µ⇤#Q�ij(qe) [1 � ge(qe)] determine the optimal profit and sales taxes.

Due to the introduction of a non-linear sales tax (or factor tax), the optimal tax system is substantially

more involved. The comparison between the second and third-best solutions become more transparent

when we consider the following special case:

Corollary 1 Suppose that at point qe, tE0
s (qe) = tE0

e (qe) = µ0 (qe) = 0, then the optimal tax rates satisfy:

1
1 � tE

e (qe)
=

1 + [1 � ḡe(qe)] H(qe)
h

1+#e
#e

(µ (qe)� x)� 1
i

µ⇤ , (46)

and
tE

s (qe)
1 � tE

s (qe)
=


µ⇤

µ (qe)
� 1
�

| {z }
RE⇤(qe)

+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe) {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}
| {z }

IRE⇤(qe)

. (47)

Proof. Ommited.

Corollary 1 directly obtains from Theorem 2. RE⇤ (qe) and IRE⇤ (qe) are analogous in Theorem 1. In par-

ticular, RE⇤ (qe) (IRE⇤ (qe)) equals RE (qe) (IRE (qe)) under linear taxes. Comparing Theorem 1 to Corollary

1 clarifies the role of non-linear sales taxes. The design of sales taxes incorporates the reallocation effect and

indirect redistribution effect. The profit tax now only covers the Mirrleesian and Pigouvian parts. More-

over, the Pigouvian part is based on the average markup instead of the firm-level markup. Note that the

profit tax rate is not the tax wedge on entrepreneurial effort considered in our benchmark model (actually

1 � te (qe) =
⇥
1 � tE

e (qe)
⇤ ⇥

1 � tE
s (qe)

⇤
). The tax wedge on entrepreneurial effort still incorporates all of the

four elements. Equation (46) suggests that rising markup inequality (increase in µ0(q)) generally makes the

profit tax more progressive. However, the profit tax rate may either increase or decrease depending on the

relative change of firm-level markup to the average markup.

The above analysis invites the following three considerations. First, findings in our benchmark model re-

garding the optimal profit tax wedge are for the total tax rate on entrepreneurial effort enforced by the profit

and sales taxes, instead of the nominal profit tax alone. Second, the main function of the non-linear sales

tax is to shoulder the burden of reallocating factors between firms and sales-based indirect redistribution.

Therefore the non-linear sales tax is generally positive for the small firms with low markups and negative

for the large firms with high markups. Third, the optimal profit tax depends on the set of enforceable poli-

cies. That said, no matter whether the non-linear sales tax is enforced, tax design critically depends on the

four elements highlighted in the benchmark model. Therefore, the total tax rate borne by factors, which we

do in the benchmark analysis, deserves special attention. While there are multiple nominal tax systems that

can achieve the same total tax rate on factors, the optimal total tax rate on factors is generally unique.
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(ii) Conditioning Taxes on Markups. In our setup so far, the planner can not condition the tax on the

firm’s markup. We believe there are sound practical and empirical reasons for this assumption because

markups are hard to measure. Markups are the ratio of price to marginal cost. Quality data on output

prices are rare to come by. What is particularly challenging is obtaining measures of marginal costs. There

are different ways to robustly calculate marginal costs – most notably through demand estimation (see for

example Berry et al. (1995)) or through cost minimization (see for example De Loecker and Warzynski (2012)

and De Loecker et al. (2020)) – but each method requires a theoretical and statistical model. It is plausible to

assume that a taxation agency will not have the resources to do this estimation for all firms.

Nonetheless, we now derive the solution even if the planner has the ability to obtain these markup

estimates. We show that with the Atkeson and Burstein (2008) technology, the optimal solution where taxes

condition on markups as well as profits is equivalent to the solution in Section OC.5.1 with non-linear sales

tax schedules. This equivalence leads us to conclude that the first-best cannot be achieved even with tax

conditions on markups.

Formally, as in the non-linear sales tax case, we do not artificially impose policy constraints, so as to focus

on the information problem itself. A planner who wants to regulate market power can enforce a markup-

based punishment (a tax on markups for example). In particular, the planner can design the following

mechanism: an entrepreneur who reports q0e should set the firm-level markup at µ (q0e) and earn ye (q0e) units

of profit. Then the entrepreneur will receive ce (q0e) units of consumption. The labor input Lw (q0e|qe) and

effort le (q0e|qe) must satisfy:

Pij

W
∂Qij

∂Lw
= µ

�
q0e
�

and PijQij � WLw = ye
�
q0e
�

, (48)

where Pij = Pij
�
Qij, Qij (qe) , qe

�
. We suppose there is a unique solution to promise-keeping constraints.

The entrepreneur’s problem can again be formulated as in equation (OC6). Thus, the incentive condition

of the entrepreneur is the same as that in Section OC.5.1, if and only if (OC7) holds here too. A sufficient

condition for (OC7) is that Lw (q0e|qe) is independent of qe, which is true under our benchmark model. To

see this, notice that ∂Qij
∂Lw

1
Qij

= x
Lw

and combine the promise-keeping constraints (48) to derive Lw (q0e|qe) =
ye(q0e)

W[µ(q0e)/x�1] , which is exactually independent of qe. Now that the incentive condition remains the same, we

know that the first-best optimum is not achievable even if the markup is observable.32

(iii) Quantity Regulation. In our benchmark model, we consider profit tax as the policy instrument to

incentivize entrepreneurs. In this subsection, we consider an alternative problem that instead uses quantity

regulation as described in Boar and Midrigan (2021).33 A natural question is whether there is any difference

in considering these two different policy instruments. Interestingly, as long as the type is unobservable, the

answer is no. Formally, the government designs the following mechanism: an entrepreneur who reports

q0e should produce Qij (q0e) units of goods and pay Te (q0e) units of tax (a subsidy, if negative). Thus, the

entrepreneur’s problem is formulated as below:

Ve (qe) ⌘ max
q0e

Ve
�
q0e|qe

�
(49)

32Under more general firm-level technology Lw (q0e|qe) may depend on qe. Either way, the first-best optimum is not achievable.
33Boar and Midrigan (2021) cannot consider profit taxes because entrepreneurs provide no effort and profit taxes therefore have

no effect on behavior.
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where Ve
�
q0e|qe

�
= max

Lw,le
P
�
Qij
�
q0e
�

, qe
�

Qij
�
q0e
�
� WLw � Te

�
q0e
�
� fe (le) (50)

s.t. Qij
�
q0e
�

= Qij (xe (qe) le, Lw) . (51)

To solve the above problem, one has the following incentive condition:

V 0
e (qe) =

∂Ve (q0e|qe)
∂qe

|q0e=qe =
∂P
�
Qij (qe) , qe

�

∂qe
Qij (qe) + f0

e (le (qe)) le (qe)
x0e (qe)
xe (qe)

.

The above incentive condition is equal to the original one if and only if P (qe) Qij (qe) = f0
e (le (qe)) le (qe) µ (qe).

Since f0
e (le (qe)) le (qe) = WLw(qe)

x ,34, the above condition naturally holds as the definition of a markup (see

e.g., equation (20)) and implies P (qe) Qij (qe) = WLw(qe)µ(qe)
x because f0

e (le (qe)) le (qe) = WLw(qe)
x . Also, note

that in line with the first-order conditions of the above incentive problem, W
∂Qij(qe)
∂Lw(qe)

P(qe)
µ(qe)

must be a constant,

which implies the policy constraint in our benchmark model. Therefore, the constraints faced by the gov-

ernment under these two different incentive problems are exactly the same. The above finding suggests that

our main finding is independent of the policy instrument and that a quantity regulation generally can be

replaced by a profit tax.

7 Quantitative Analysis
To provide direct guidance for policymakers and to approximate the theoretical results to reality, we per-

form a full quantitative exercise using microdata from the United States economy and estimating the model

to match key moments regarding. In what follows, (i) we lay out the parameterize and underlying assump-

tions; (ii) describe the data; (iii) calibrate the distributions of xw (qw), Xe(qe), and µ (qe) using data on income

and markups; (iv) solve for the optimal tax rates and tax revenue and perform counterfactual exercises. We

execute the analysis in two different years, 1980 and 2019, to evaluate how optimal taxation changes during

the the period in which market power has risen sharply.

7.1 Parameterization

For our benchmanrk economy, we consider a quasi-linear utility c � l1+1/#

1+1/# with # = 0.33 (Chetty (2012))

and take the Atkeson-Burstein production technology specified in equations (1) to (4). To capture social

preferences for redistribution, we consider a concave social welfare function G (V) = V1�k�1
1�k , where the

parameter k governs the preference for equality. We set the key parameters k = 0.77, following Heathcote

et al. (2017) who find that for k = 0.77 marginal tax rates are in the range of those observed empirically. We

take the benchmark value for s = 1.4 from Katz and Murphy (1992). Their elasticity of substitution between

different inputs of skilled labor is for a CES production function as in our model. To guarantee the concavity

of the entrepreneur’s incentive problem, we set x = 0.5. In section 7.3, we investigate the robustness of our

main results to the the choice of {k, s, x}.

We assume qo is equal to the quantile of yo (qo), which means fo (qo) = 1 and Qo = [0, 1]. Since the

functions xw (qw) and Xe(qe) are used to govern the abilities there is no loss to assume that the distributions

of skills are uniform. Following Saez and Stantcheva (2018), we set the average income tax rate to match the

U.S. average tax rate on total income, which means the tax rate on labor and profit income is 25.6% in 1980

34This equation can be derived by the first-order conditions of the entrepreneur’s problem.
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and 25% in 2019. Tax revenue is returned to the agent through lump sum transfer payments.

7.2 Data and Calibration

We calibrate our economy to the distributions of labor income, profits, and markups for the US economy.

(a) Labor Income - 1980 (b) Labor Income – 2019 (c) Profits – 1980 (d) Profits – 2019

Figure 1: Labor Income and Profit Distributions

Labor Income. We obtain the income distribution of salaried workers in 2019 and 1980 from the Current

Population Survey (CPS) and use the lognormal fit to estimate the model. Figures 1a and 1b plot the income

distribution of salaried workers (red) and its lognormal fit (blue) for 1980 and 2019 on a log scale, and we

report the mean and standard deviation of the log wages.35

Profits. We use profit data from De Loecker et al. (2020) based on the sample of publicly traded firms and

use the lognormal fit to estimate the model. Figures 1c and 1d plot the distribution of log profit (red) and its

lognormal fit (blue) for 1980 and 2019, and report the mean and standard deviation of log profits.36

Markups. We obtain the markup data using the method in De Loecker et al. (2020). The firm-level markup

is defined as the ratio of the output price to the marginal cost and is estimated using the cost approach.

From the cost-minimization decision of the firm, the firm-level markup can be expressed as µi = aV Si
EV

i

where µi is firm i’s markup, aV is the output elasticity of the variable input, Si is the sales of firm i, and

EV
i is its expenditure on the variable input. We use accounting data on sales and expenditures on different

inputs (capital and variable inputs including labor) and estimate a firm-level production function to obtain

the output elasticity aV . We obtain the individual firm-level markup in each year, and hence the markup

distribution for all firms.37

One insight from our theoretical analysis is that the firm-level markup is a sufficient statistic that captures

the influence of market power on the equilibrium allocation and optimal taxation. There is no need to

calibrate h (qe) and I separately, as long as we have µ(qe).

The average markup µ enters the optimal tax formulas. Because heterogeneity in markups in our model

is between markets and not within, we use the cost-weighted markup in the model and match it to the

cost-weighted markup in the data.38 Formally, we first calculate firm-level markups as described above,

and rank the firms by their firm-level markups µij. In our model, markups are increaseing in q. Denote by

35We consider total pre-tax wage and salary income for the previous year. Armed forces and agriculture are excluded from the
analysis. The sample includes those workers between 16 and 64 years old who were full-time employed during the full year and
whose income was bigger than 0.

36Profits are in millions of dollars in 2019 prices, truncated at 0.
37We rank markups and truncate the sample below at 1 and winsorize the top at 0.8% to remove outliers.
38For a discussion on the distinction between alternative weighting of average markups, see De Loecker et al. (2020); Edmond

et al. (2019).
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Jij =
Âµi0 j0 µij

Lw,i0 j0

Âi0 j0 Lw,i0 j0
the cost weight of the firms with markup not higher than µij. We match the cost weighted

markup schedule µ(qe) from the model to the data, using a polynomial fit.

Figure 2 reports the data and the model fit of the cost-weighted markup distribution for 1980 and 2019.

The cost-weighted average markup increases from 1.26 in 1980 to 1.38 in 2019. The plot shows the rise in the

average markup is driven predominantly by the rise of the markup in the top percentiles of the distribution.

Figure 2: Markup Distribution:
data and calibrated model

(a) Income-based Income Tax Wedges (b) Profit-based Profit Tax Wedges

Figure 3: Optimal Tax Wedges in 1980 and 2019

Skill Gap. Finally, we calibrate xw(·) and Xe (·) using the agents’ first-order conditions. Our theoretical

analysis suggests that the equilibrium allocation and optimal taxation do not depend on the decomposition

of Xe (qe) into xe(qe) and c(qe). Therefore, there is no need to calibrate xe(qe) and c(qe) seperately, and

instead we calibrate Xe (qe), or alternatively, ge (qe).39 Equation (33) then gives us the expression for the skill

gap g0
e(qe)

ge(qe)
, which we plot and discuss in Figure 5 below. Last, we set Ne = 1 and derive Nw by the labor

market clearing condition, which is equivalent to (because ye(qe)
W

x
µ(qe)�x = Lw (qe)):

Nw

Z

qw

yw (qw) fqw (qw) dqw = Ne

Z

qe

ye (qe)
W

x

µ (qe)� x
fqe (qe) dqe. (52)

7.3 Quantitative Results

With the calibrated parameters, we now report our main results.

Optimal Tax Rates. The existing tax regime may well be suboptimal. We therefore ask, within the context

of the model and given the planner’s objective, what the optimal tax rate is. Our main finding is that the

optimal effective tax rate on labor income decreases between 1980 to 2019, while the optimal effective tax

rate on profit increases between 1980 to 2019.

Figure 3 plots the tax rates on labor and profits against income yo. Given our estimated economies, the

optimal labor income tax rate in 2019 is lower than in 1980, while the profit tax rate is higher in 2019. In

particular, the tax rate is higher for the top profits. The profit tax for large, high profit firms also becomes

less regressive, while there is no significant change in the progressivity of labor income tax.

The optimal average labor income tax rate decreases from 21.4% in 1980 to 11.5% in 2019. Meanwhile,

39In Online Appendix OA.2, we derive the equilibrium solution as a function of parameters and tax rates. The equilibrium
solution together with Theorem 1 implies the above findings.
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the optimal average profit tax rate increases from 58.6% in 1980 to 61.3% in 2019.40 When taxes transition

from the initial level to the optimal level, the share of after-tax labor income in 1980 and 2019 increases by

16 and 20 percentage points, respectively.41

In addition to its role in redistribution, taxation also improves the efficiency of factor allocation among

firms. The optimal taxation reallocates factors to high-markup firms and, as a result, improves allocative

efficiency, but it also increases market concentration and the average markup.42

Decomposition of Optimal Taxation. The main reason for the decrease in the labor income tax rate is the

rise in average markups, which reduces the Pigouvian part of the tax rule. The change in the profit tax rate

is more intricate due to the different forces. In Figure 4, we decompose the profit tax rate into the Pigouvian

part, the reallocation effect, the indirect redistribution effect, and the Mirrleesian part. The four elements are

designed so that the optimal profit tax rate increases in all of the four components.

(a) Pigouvian Part (b) RE (c) IRE (d) Mirrleesian Part

Figure 4: Four Elements of the Profit Tax Wedge

Figure 3 establishes that the overall effect of the four components is an increase in the profit tax rate.

In Figure 4 we observe that there is a decline in the top profit tax rate due to the Pigouvian part as well as

the reallocation effect lower, whereas the indirect redistribution effect and the Mirrleesian part increase the

top profit tax rate. Overall, the positive impact dominates. The Mirrleesian part contributes the majority to

the increase of the top profit tax. It is worth noting that the Mirrleesian part is determined by the skill gap,

which in turn depends on the ability distribution and the markup (see equation (33)). The markup enters

the Mirrleesian part through the profit elasticity. Figure 5 demonstrates that the change in skill gap comes

almost entirely from the changes in profit elasticity.

The solid lines in Figure 5 depict the logarithms of skill gap in 1980 and 2019. The dashed lines depict

the logarithms of the inverse of profit elasticity in 1980 and 2019. Recall that the profit elasticity is a part

of the skill gap (see equations (33) and (32)). The rise of skill gaps from 1980 to 2019 mainly originates

from the decrease in profit elasticities because both patterns are remarkably similar. Since the change in

profit elasticity is due to the change in markups (from equation (32)), this result suggests that rising markup

generally increases the Mirrleesian part by decreasing the profit elasticity. That said, it is worth mentioning
40The after-tax labor income of qo refers to yo � To (yo)� to, where to = �To (yo (qo)) is a lump-sum transfer (tax if negative).

Then To (yo) =
R yo

yo(qo)
T0

o (y) dy � to. We treat yw =
R yw

y
w
[y � Tw (y)� tw] fyw (y) dy as the average after-tax labor income, and

To =

R yo
yo

[To(y)+to ] fyo (yo)dy
R yo

yo
yo fyo (yo)dy

is the average tax rate, where y
o
= yo (qo) and yo = yo

�
qo
�
.

41The original after-tax share of labor income to the total incomes in 1980 and 2019 are 39.8% and 36.4%. In the optimum,
the after-tax share of labor income is 55.5% in 1980 and 56.5% in 2019. This is also the case considering transfer. The original
after-tax-and-transfer share of labor income is 55.2% in 1980 and 52.3% in 2019, which are 75.0% and 75.3% in the optimum.

42The cost-weighted average markup in 2019 increases slightly from 1.375 in the initial economy to 1.382 in the optimum. In
1980, the increase is from 1.257 to 1.261.
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Figure 5: Skill Gap and Profit Elasticity Figure 6: Counterfactual Profit Tax Wedges

that the markup enters all four factors.43 Whether the rise of market power increases or decreases the

optimal tax rate depends on all of these four components. It turns out that for the top profit tax rate, the

impact of market forces on the Mirrleesian term is the most important. This means that as long as the

government has a preference for equality, the recent changes in market powers require a higher top-profit

tax rate.

Robustness. We consider k 2 {0.7, 0.77, 1, 3}, x 2 {0.4, 0.5, 0.6}, and s 2 {1.4, 1.3, 1.2} to evaluate the

robustness of our main results. Our choices of k covers common values used in the literature.44 To guarantee

the concavity of the entrepreneur’s incentive problem, the value of the span of control in our model can not

be too large, hence the range of values for x. Finally, the choice of s can not be larger than 1.4, because the

theoretical maximum value of firm-level markup decreases in s. As the highest markup in our samples is

3.5, s can not be higher than 1.4.

We find that our main conclusions hold within the broad parameter range mentioned above. That is, the

labor income tax rates decrease and the profit tax rates increase. The optimal profit tax rate is insensitive

to k. In all cases, the optimal average profit tax rate is around 58% in 1980 and 61% in 2019. The optimal

average labor income tax rate increases in k. For k = 0.7, 1, and 3, it is 19.7%, 26.1%, and 44% in 1980; and

9.6%, 16.7%, and 37% in 2019. Figure OE2 in Online Appendix OE reports those results.

We also check the robustness of our result by changing the value of x and s chosen for the calibration,

while given markups. Note that changes in x and s do not change tw (·). However, it affects Tw (·) by

changing yw (·). In contrast, x and s affect Te (·) both directly and indirectly. Figure OE3 and OE4 in Online

Appendix OE show that our conclusions hold, because the impact of x and s on the optimal taxation of 1980

and 2019 works in the same direction.
Counterfactual Analysis and Policy Implications. To investigate how changes in the markups would

affect the optimal profit tax wedges, we conduct a counterfactual analysis with respect to µ (·). Specifically,

we ask how the optimal tax rate in 2019 would change if the markups remains at the 1980 level? Figure 6

plots the profit tax wedges for 2019 with counterfactual 1980 level taxes, in addition to the 1980 and 2019

tax wedges. We see that taxes are lower for high profit incomes, and higher for the low profit incomes. This

exercise isolates the effect of markups on the optimal tax rate from the effect changes in the productivity.

43The indirect redistribution effect also depends on the market structure because of the pricing power.
44For example, Saez (2001) considers u = log

⇣
c � l1�1/#

1�1/#

⌘
, which is equivalent to our case with k = 1. In their early version,

Sachs et al. (2016) considered k = 1, 3.
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As Figure 6 highlights, fixing markups to the lower 1980 level decreases the tax wedge for the high profit

entrepreneurs. Next, we again decompose the elements of optimal tax rates to show how the top profit tax

rate increases in this counterfactual exercise where only the markups vary and the productivity distribution

is kept at the 2019 level.

(a) Pigouvian Part (b) RE (c) IRE (d) Mirrleesian Part

Figure 7: Counterfactual: Four Elements of Profit Tax Wedges in 2019 with 1980 Markups

Figure 7 decomposes the tax change for the counterfactual. With markups held at the 1980 level, the

Pigouvian part and reallocation effect are larger for high incomes and lower for low incomes. These two

elements require the optimal profit to be more regressive. However, the other two elements have opposite

effects. The change in the Indirect Redistribution Effect increases the tax rates of low and middle types and

decreases the tax rates of high types. While it significantly decreases the top profit tax with markups of

1980, it has minor effects on the the top tax rate in 2019 because the cross-inverse demand elasticity becomes

smaller for the top. Finally, we see that the increase in the Mirrleesian part due to the increase of the markup

is primarily responsible for the increase in the top profit tax.

Policy Implications. Our quantitative results provide three key policy implications. First, with the changing

market structure that we have observed in recent years, the labor the income tax rate should be appropri-

ately reduced, while the profit tax rate should be appropriately increased, especially for firms at the top

of the distribution. Second, for large firms, the profit tax rate should be appropriately regressive to im-

prove production efficiency through the reallocation effect. Third, while the optimal profit tax rate should

be regressive for large firms, it becomes less regressive during the years that market power increases.

8 Conclusion
The most effective way to address market power is to eliminate the root cause with competition policy. In

its absence, we ask what the role is for income taxation in addressing the inefficiency and inequality due

to market power. In a standard partial equilibrium setting, taxing profits redistributes resources but does

not affect optimal production. In a Mirrleesian setting, however, income and profit taxes do affect optimal

production via the incentive constraint, endogenous labor supply, and the general equilibrium wage effect.

How should a policymaker design optimal taxation rules to balance the distributional and efficiency

considerations, in an economy where incentives for production and market power interact? Optimal tax-

ation cannot achieve the first-best, but it can improve welfare by enhancing the allocation efficiency while

simultaneously redistributing income to the poor.
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Our theory seamlessly merges the Mirrleesian approach to optimal income taxation with an Atkeson-

Burstein inspired model of oligopoly pricing, which gives rise to a tractable framework. We derive tax

wedges for labor and entrepreneurial income taxes that can be decomposed into four channels: (i) a Mir-

rleesian channel; (ii) a Pigouvian correction of the externality from market power; (iii) an indirect redistri-

bution effect; and (iv) a reallocation effect towards more productive firms.

We conduct a detailed quantitative analysis estimating our model economy to match the key moments of

the US economy in 1980 and 2019, a period of rising market power. Our estimates allow us to decompose the

optimal tax rules into the four channels that we identify in the theory. Our main insights for policymakers

are that optimal labor income taxes in 2019 are lower than in 1980 due to the rise of market power, and that

optimal profit taxes are higher on average. We also find that optimal profit tax is regressive, in order to raise

allocative efficiency, but less so in 2019 than in 1980, due to the trade-off between efficiency and equality.

Optimal income taxation in the presence of market power is far from first-best, yet optimal income

taxation reduces inequality and incentivizes production by reducing taxes on labor, which increases the

after-tax labor share. Meanwhile, profit tax rates are positive and increased to raise taxes for transfer. Last,

policymakers should also use taxation to reduce misallocation between firms with low and high markups,

which results in a relatively regressive profit tax to the labor income tax.
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APPENDIX

A Environment

A.1 The Cournot Competitive Tax Equilibrium

When first-order conditions are both necessary and sufficient to both the individuals’ and final good pro-

ducer’s problems, the equilibrium allocations are determined by (12) to (18) and the individuals’ budget

constraints. Under the technology considered in this paper and fo (lo) =
l
1+ 1

#o
o

1+ 1
#o

, we have the following con-

ditions in the symmetric equilibrium:

1. First-order conditions

P(qe) = [Ne fe(qe)]
� 1

s z(qe)A
s�1

s Qij (qe)
� 1

s Q
1
s , (A1)

and 
1 +

∂ ln Pij(Qij(qe), Q�ij (qe) , qe)

∂ ln Qij(qe)

�
xP(qe)Qij(qe)

Lw(qe)
� W

1 � ts
= 0 (A2)

and

Wxw (qw)
⇥
1 � T0

w (Wxw (qw) lw (qw))
⇤
= lw (qw)

1
#w , (A3)

and


1 +
∂ ln Pij(Qij(qe), Q�ij (qe) , qe)

∂ ln Qij(qe)

�
P(qe)Qij(qe) (1 � ts)

⇥
1 � T0

e (ye (qe))
⇤
= le (qe)

1+ 1
#e , qo 2 Qo.

Combination of (A2) and (19) (i.e., µ(qe) =
P(qe)

W/


∂Qij(qe)
∂Lw(qe)

(1�ts)

� =
xP(qe)Qij(qe)(1�ts)

WLw(qe)
) delivers (20). Substituting

1 +
∂ ln P(Qij(qe),qe)

∂ ln Qij(qe)
by (20), we have:

WLw(qe) =
x (1 � ts)

µ (qe)
P(qe)Qij(qe), (A4)

and
P(qe)Qij(qe) (1 � ts)

µ (qe)

⇥
1 � T0

e (ye (qe))
⇤
= le (qe)

1+ 1
#e , qe 2 Qe. (A5)

2. Inverse demand function

Pij(Qij, Q�ij (qe) , qe) = c(qe)A
s�1

s Q
� 1

h(qe)
ij I�

h
1

h(qe)
� 1

s

i
h(qe)

h(qe)�1

2

4 (I � 1) Q�ij (qe)
h(qe)�1

h(qe)

+Q
h(qe)�1

h(qe)
ij

3

5

h
1

h(qe)
� 1

s

i
h(qe)

h(qe)�1 
Q
N

� 1
s

,

(A6)

where Qij (qe) is treated as given by the entrepreneurs.



3. Labor market clear condition

Z

qw

xw (qw) lw (qw) fw(qw)dqw = W#w

Z

qw

z (qw)
#w+1 [1 � tw (qw)]

#w fw(qw)dqw (A7)

4. Meanwhile, in the equilibrium, we have:

Q =
Z

qe

Ne fe (qe) P(qe)Qij(qe)dqe. (A8)

The above parts 1 to 4 solve the symmetric equilibrium allocation {Lw(qe), le (qe) ,lw (qw)}, price system

{P(qe),W}, and total output Q. Then one can derive other allocations with individuals’ budget constraints.

A.2 Elasticities in the Equilibrium

A.2.1 Definitions

Price Elasticities. We define the elasticity of firm-level outputs with respect to the entrepreneurial effort

le(qe) and labor inputs Lw(qe) respectively as:

#
Qij
le (qe) ⌘

∂ ln Qij (qe)

∂ ln le(qe)
and #

Qij
Lw
(qe) ⌘

∂ ln Qij (qe)

∂ ln Lw(qe)
.

In the Atkeson-Burstein economy, #
Qij
le (qe) = 1 and #

Qij
Lw
(qe) = x are constants.

We define the sales elasticity and price elasticity respectively as

#S
Qij

(qe) ⌘
∂ ln

⇥
Pij
�
Qij (qe) , Qij (qe) , qe

�
Qij (qe)

⇤

∂ ln Qij (qe)
and #P

Qij
(qe) ⌘

∂ ln P (qe)
∂ ln Qij (qe)

.

Define the own-inverse demand elasticity and cross-inverse demand elasticity as:

#P,own
Qij

(qe) ⌘
∂ ln Pij

�
Qij, Qij (qe) , qe

�

∂ ln Qij
|Qij=Qij(qe) and #P,cross

Q�ij
(qe) ⌘

∂ ln Pij
�
Qij, Qij (qe) , qe

�

∂ ln Qij (qe)
|Qij=Qij(qe).

By definitions, #P
Qij

(qe) = #P,own
Qij

(qe) + #P,cross
Q�ij

(qe) and #S
Qij

(qe) = 1 + #P
Qij

(qe). Moreover, notice that µ (qe) =
1

1+#P,own
Qij

(qe)
. We have

#S
Qij

(qe) =
1

µ (qe)
+ #P,cross

Q�ij
(qe) , 8qe 2 Qe. (A9)

Following Sachs et al. (2020), we denote by #v
Lw
(q0e, qe) and #v

le (q
0
e, qe) the cross elasticities of wage with

respect to Lw(qe) and le(qe) for any (qe, q0e) 2 Q2
e :

#v
Lw
(q0e, qe) =

8
<

:

∂ ln v(q0e)
∂ ln Lw(qe)

, q0e 6= qe,

limq0e!qe
∂ ln v(q0e)
∂ ln Lw(qe)

, q0e = qe



and

#v
le (q

0
e, qe) =

8
<

:

∂ ln v(q0e)
∂ ln le(qe)

, q0e 6= qe,

limq0e!qe
∂ ln v(q0e)
∂ ln le(qe)

, q0e = qe.

We denote #v
Lw
(qe) and #v

le (qe) as the own elasticities of wages with respect to Lw(qe) and le(qe). These

own elasticities of wages are defined by the following relationships:

∂ ln v(qe)
∂ ln Lw(qe)

= #v
Lw
(qe, qe) + #v

Lw
(qe)d

�
q0e � qe

�
and

∂ ln v(qe)
∂ ln le(qe)

= #v
le (qe, qe) + #v

le (qe)d
�
q0e � qe

�
,

where d denotes the Dirac delta function, (qe, q0e) 2 Q2
e . See Appendix A.2.2 for details about the above

elasticities.

A.2.2 Elasticities in the Atkeson-Burstein Economy

Wage Elasticity. Remember that in the Atkeson-Burstein economy, we have:

Pij(qe) = N� 1
s A

s�1
s c(qe)Qij (qe)

� 1
s Q

1
s ,

Qij (qe) = xe (qe) le (qe) Lw (qe)
x ,

v (qe) =
c(qe)N� 1

s A s�1
s Qij (qe)

� 1
s Q 1

s

µ (qe)
xxe (qe) le (qe) Lw (q)x�1 , 8qe 2 Qe.

It’s easy to see that #v
Lw
(q0e, qe) and #v

le (q
0
e, qe) are independent of q0e. By definition,

#v
Lw
(qe) = x

✓
1 � 1

s

◆
� 1 < 0, and #v

le (q) = 1 � 1
s
> 0. (A10)

Note that both #v
Lw
(qe) and #v

le (q) are constants.

Price Elasticity. Solving the final good producer’s problem, we immediately have the price equation (A1)

and the inverse demand function (A6). By the definitions of the price elasticities, we have the following

results in this economy:

#P
Qij

(qe) = � 1
s

, #S
Qij

(qe) =
s � 1

s
,

#P,own
Qij

(qe) = �


1
h (qe)

I � 1
I
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1
s

1
I

�
,

#P,cross
Q�ij

(qe) =


1

h (qe)
� 1

s

�
I � 1

I
, 8qe 2 Qe.

Notice that µ (qe) = 1
1+#P,own

Qij
(qe)

, we have:

#P,cross
Q�ij

(qe) = � 1
µ (qe)

+
s � 1

s
, 8qe 2 Qe. (A11)



Under our production technology, we have

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) (A12)

=
d ln P(qe)

dqe
� #P,own

Qij
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d ln Qij (qe)

dqe
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� 1
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Q0
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h (qe)
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1
I
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� Q0
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Qij (qe)

=
c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)
d ln Qij (qe)

dqe
, 8qe 2 Qe.

Specially, when I = 1, we have
d ln Pij(Qij,Q�ij(qe),qe)

dqe
|Qij=Qij(qe) =

c0(qe)
c(qe)

.

Elasticity of Profit. Consider a small increase (i.e., dt) in the marginal tax rate faced by the qe-type en-

trepreneur. In this case, the tax reform has no first-order effects on the aggregate values and the actions of

other types. Therefore, aggregate variables including outputs of final goods and price of labor factors are

unchanged. As in Scheuer and Werning (2017), the elasticity derived here is a micro elasticity.

The optimal choice of the qe-type entrepreneur (i.e., le and Lw) satisfy the following first-order conditions

in the equilibrium:

WLw = (1 � ts)
PijQij

µ (qe)

∂ ln Qij

∂ ln Lw
, (A13)

and

f0
e (le) =

⇥
1 � T0

e(PijQij (1 � ts)� WLw)� dt
⇤ PijQij (1 � ts)

leµ (qe)
, (A14)

where Pij and Qij refere to Pij
�
Qij, Q�ij (qe) , qe

�
and Qij (xe(qe)le, Lw), respectively. Note that Qij (qe) in

Pij
�
Qij, Q�ij (qe) , qe

�
is treated as given by the agent. Equation (A13) is derived by (16) and (20), and equa-

tion (A14) is derived by (18) and (20).

The cases we considered has constant ∂ ln Qij
∂ ln Lw

and exogenous µ (qe). Set x =
∂ ln Qij
∂ ln Lw

. Combination of (A13)

and (A14) gives:

WLw = (1 � ts)
PijQij

µ (qe)
x, (A15)

and

f0
e (le) =
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e

✓✓
µ (qe)

x
� 1
◆

WLw

◆
� dt

�
WLw

x

1
le

. (A16)

The qe-type entrepreneur’s reaction to the tax reform can be described by differential equations of the

first-order conditions. Total differential of (A16) gives:

1 + #e

#e

dle

le
=

dLw

Lw


1 � yeT00

e (ye)
1 � T0

e(ye)

�
� dt

1 � T0
e(ye)

. (A17)

Total differential of (A13) gives:

dLw

Lw
=

1
µ (qe)


dle

le
+ x

dLw

Lw

�
.



Note that Q�ij (qe) also changes with the tax reform, which is captured by #P,cross
Q�ij

(qe).

A combination of the above two equations gives

�
dLw
Lw
dt

1�T0
e(ye)

=
1

1+#e
#e

[µ (qe)� x]�
h
1 � yeT00

e (ye)
1�T0

e(ye)

i . (A18)

Notice that ye = PQij (1 � ts)� WLw and WLw = (1 � ts) PQij
x

µ(qe)
. We have ye = WLw

⇣
µ(qe)

x � 1
⌘

and

dye

ye
=

dLw

Lw
. (A19)

Define #
ye
1�te

(qe) ⌘ � dye(qe)
ye(qe)

/ dt
1�T0

e(ye(qe))
as the non-linear profit elasticity. We have:

#
ye
1�te

(qe) =
1

1+#e
#e

[µ (qe)� x]�
h
1 � ye(qe)T00

e (ye(qe))
1�T0
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General Elasticity of Profit. Again, consider a small increase (i.e., dt) in the marginal tax rate faced by the

qe-type entrepreneur. The tax reform has no first-order effects on the aggregate values and the actions of

other types. Aggregate variables including outputs of final goods and price of labor factors are unchanged.

However, unlike the profit elasticity considered in the previous, now we consider a profit elasticity in the

general equilibrium, where the change of Q�ij (qe) should be taken into consideration. Set e#ye
1�te

(qe) ⌘
� dye(qe)

ye(qe)
/ dt

1�T0
e(ye(qe))

as the elasticity of profit in this case. We call e#ye
1�te

(qe) the general elasticity of profit and

#
ye
1�te

(qe) the partial elasticity of profit to distinguish them from each other.

Still, we have (A15) and (A16). However, when taking total differential, one should include the change

of Q�ij (qe). Notice that Q�ij (qe) = Qij (qe). Total differential of (A15) delivers:
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On the other hand, we still have (A17). Substitute dle
le in (A17) by the above equation:

e#ye
1�te

(qe) =
1

1+#e
#e

∂ ln Qij(qe)
∂ ln le(qe)

2

4 1

#S
Qij
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� x

3

5�
h
1 � ye(qe)T00
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i
. (A21)

The general profit elasticity shows to what extent the marginal profit tax reform changes the firm-level

profits by changing the firm’s own decisions and its competitors’ outputs, while the partial elasticity reflects

the reaction of the firm to the tax reform.

B Solution

B.1 Proof of Lemma 1

To simplify notation, in the following analysis, we set P
�
Qij, qe

�
= Pij

�
Qij, Q�ij (qe) , qe

�
for any qe 2 Qe and

Qij 2 R+.

We first prove part (i) of Lemma 1 (i.e., given (A22), (A26) is satisfied if and only if (29) is satisfied).

According to the definition of Ve(q), we have

Ve(qe) = ce (qe)� fe (le(qe)) , 8qe 2 Qe, (A22)

Notice that

Ve(q
0
e|qe) = ce

�
q0e
�
� fe

�
le
�
q0e|qe

��
,

where le (q0e|qe) is the effort needed to finish the q0e task:

le
�
q0e|qe

�
= arg min

le,Lw

�
le|P

�
Qij (xe (qe) le, Lw) , Q�ij (qe) , qe

�
· Qij (xe (qe) le, Lw) (1 � ts)� WLw = ye

�
q0e
� 

.

(A23)

Obviously, P
�
Qij (xe (qe) le, Lw) , Q�ij (qe) , qe

�
· Qij (xe (qe) le, Lw) (1 � ts)� WLw increases in le. Denote

by Lw (qe|le) the solution to

Lw (qe|le) = arg max
Lw

�
P
�
Qij (xe (qe) le, Lw) , Q�ij (qe) , qe

�
· Qij (xe (qe) le, Lw) (1 � ts)� WLw

 

for le > 0. In Online Appendix OB.2, we show that for any le > 0, the first-order condition for solving

Lw (qe|le) is not only necessary but also sufficient and there is a unique solution. Meanwhile, for Lw > 0,

P
�
Qij (xe (qe) le, Lw) , Q�ij (qe) , qe

�
Qij (xe (qe) le, Lw) (1 � ts)� WLw

strictly increases in le. Therefore, there must exist a unqiue solution to problem (A23). Denote by Lw (q0e|qe)

the optimal labor input given that qe entrepreneur reports q0e. When ye (q0e) = 0, Lw (q0e|qe) = le (q0e|qe) = 0.

Otherwise, Lw (q0e|qe) > 0 and le (q0e|qe) > 0 are determined by the first-order conditions. In particular,



Lw (q0e|qe) and le (q0e|qe) satisfy:
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�
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Equation (A24) and problem (A23) implies:
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∂qe

= �
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The first-order incentive condition ( ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0) can be expressed as

0 =


c0e
�
q0e
�
� f0

e
�
le
�
q0e|qe

�� ∂le (q0|q)
∂q0

�
|q0=q , 8qe 2 Qe. (A26)

First, note that by

Ve(qe) = max
q0e

Ve(q
0
e|qe),

we have

V 0
e (qe) =

∂Ve(q⇤e (qe) |qe)
∂q⇤e (qe)

dq⇤e (qe)
dqe

+
∂Ve(q⇤e (qe) |qe)

∂qe
(A27)

where we use q⇤e (qe) to denote the optimal choice of qe entrepreneur.

Second, by the definition of Ve(q0e|qe), we have

∂Ve(q⇤e (qe) |qe)
∂qe

= �f0
e (le (q

⇤
e (qe) |q))

∂le (q⇤e (qe) |qe)
∂qe

, (A28)

where by (A25), we have

∂le (q⇤e (qe) |qe)
∂qe

= � x0e (qe)
xe (qe)

le (q
⇤
e (qe) |qe) (A29)

�
∂ ln P

�
Qij (xe (qe) le (q⇤e (qe) |qe) , Lw (q⇤e (qe) |qe)) , qe

�

∂qe

le (q⇤e (qe) |qe)

1 + #P,own
Qij

(qe)
.



Combining (A27), (A28), and (A29) gives

V 0
e (qe) =

∂Ve(q⇤e (qe) |qe)
∂q⇤e (qe)

dq⇤e (qe)
dqe

� f0
e (le (q

⇤
e (qe) |q))

2
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� x0e(qe)

xe(qe)
le (q⇤e (qe) |qe)�

∂ ln P(Qij(xe(qe)le(q⇤e (qe)|qe),Lw(q⇤e (qe)|qe)),qe)
∂qe

le(q⇤e (qe)|qe)

1+#P,own
Qij

(qe)

3

75

which implies that for any qe 2 Q,

V 0
e (qe) = f0

e (le (q
⇤
e (qe) |qe)) le (q

⇤
e (qe) |qe)

2

4
x0e(qe)
xe(qe)

+ µ (qe)

⇥ d ln Pij(Qij,Q�ij(qe),qe)
dqe

|Qij=Qij(xe(qe)le(q⇤e (qe)|qe),Lw(q⇤e (qe)|qe))

3

5 (A30)

if and only if ∂Ve(q⇤e (qe)|qe)
∂q⇤e (qe)

dq⇤e (qe)
dqe

= 0.

Notice that mass points are ruled out by Assumption 1: ∂Ve(q⇤e (qe)|qe)
∂q⇤e (qe)

dq⇤e (qe)
dqe

= 0 if and only if ∂Ve(q⇤e (qe)|qe)
∂q⇤e (qe)

=

0. Therefore, (29), i.e., (A30) when q⇤e (qe) = qe, implies the first-order necessary condition ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0;

and the first-order necessary condition ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0, i.e., ∂Ve(q⇤e (qe)|qe)
∂q⇤e (qe)

|q⇤e (qe)=qe = 0, implies (29) when the

agent reports the true types. In conclusion, (29) is a necessary condition for the truth-telling strategy to be

the optimum choice of agents and it implies ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0.⌅

B.2 Optimal Taxation

B.2.1 Lagrangian and First-order Conditions

We now take Lagrange multipliers to solve the planner’s optimization problem.45 The Lagrangian function

for the planner’s problem is:

£
�

Lw, lw, le, Vw, Ve, d; l, l0, yw, ye, k, j
�

= Â
o2{w,e}

No

Z

qo

G (Vo(qo)) efo (qo) dqo + l

"
Q � Â

o2{w,e}
No

Z

qo
[Vo (qo) + fo (lo (qo))] fo (qo) dqo � R

#

+l0


Nw

Z

qw

xw (qw) lw (qw) fw (qw) dqw � Ne

Z

qe

Lw (qe) fe (qe) dqe

�
+
Z

qe

j (qe)
d ln v (qe)

dqe
dqe

+
Z

qe

k (qe)


d (qe)�

d ln Qij (qe)

dqe

�
dqe +

Z

qw

yw (qw)


lw (qw) f0

w (lw (qw))
x0w (qe)
xw (qe)

� V 0
w(qw)

�
dqw

+
Z

qe

ye (qe)


f0

e (le (qe)) le (qe)


x0e (qe)
xe (qe)

+ µ(qe)

✓
c0 (qe)
c (qe)

+ #P,cross
Q�ij

(q) d (qe)

◆�
� V 0

e (qe)

�
dqe,

where c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe) d (qe) =
d ln Pij(Qij,Q�ij(qe),qe)

dqe
|Qij=Qij(qe), and v (qe) =

∂[Pij(Qij(qe),Q�ij(qe),qe)Qij(qe)]
∂Lw(qe)

. Note

that we have introduced d (qe) =
d ln Qij(qe)

dqe
as a control value and that ln Qij (qe) can be treated as a state

variable. Constraint d ln v(qe)
dqe

= 0 is used to guarantee that v (qe) =
∂[Pij(Qij(qe),Q�ij(qe),qe)Qij(qe)]

∂Lw(qe)
(equivalently

v (qe) =
P(qe)
µ(qe)

∂Qij(qe)
∂Lw(qe)

) is constant, which is a result of uniform sales taxes on the goods produced by firms.

45See Luenberger (1997) for details about the Lagrangian techniques, and Mirrlees (1976), Golosov et al. (2016), Findeisen and
Sachs (2017) for its application in the field of public economics.



Taking partial integrals yields the following

�
Z

qe

k (qe)
d ln Qij (qe)

dqe
dqe = ln Qij (qe) k (qe)� ln Qij

�
qe
�

k
�
qe
�
+
Z

qe

k0 (qe) ln Qij (qe) dqe,

and Z

qe

j (qe)
d ln v (qe)

dqe
dqe = j

�
qe
�

ln v
�
qe
�
� j (qe) ln v (qe)�

Z

qe

j0 (qe) ln v (qe) dqe,

and

�
Z

qo

yo(qe)V 0
o(qo)dqo = Vo(qo)yo(qo)� Vo(qo)yo(qo) +

Z

qo

y0
o(qo)Vo(qo)dqo.

The derivatives with respect to the endpoint conditions yield boundary conditions:

k(qe) = k(qe) = j
�
qe
�
= j (qe) = yo(qo) = yo(qo) = 0, o 2 {w, e} . (A31)

Thus, Z

qe

j0 (qe) dqe = 0, (A32)

Substituting the above conditions into the Lagrangian function yields the following first-order conditions:

∂£
∂Vo(qo)

= G0(Vo(qo))No efo (qo) + y0
o(qo)� lNo fo (qo) = 0, (A33)

∂£
∂d (qe)

= k (qe) + ye (qe) f0
e (le (qe)) le (qe) µ(qe)#

P,cross
Q�ij

(qe) = 0, (A34)

∂£
∂lw (qw)

=
⇥
�lf0

w (lw (qw)) + l0xw (qw)
⇤

Nw fw (qw) + yw (qw)
f0

w (lw (qw))
xw (qw)

1 + #w

#w
= 0, (A35)

∂£
∂Lw(qe)

=


lP (qe)

∂Qij (qe)

∂Lw(qe)
� l0

�
Ne fe (qe) +

2
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k0(qe)
Lw(qe)

∂ ln Qij(qe)
∂ ln Lw(qe)

�
R

Qe j0(q0e)
∂ ln v(q0e)
∂ ln Lw(qe)

dq0e
Lw(qe)

3

75 = 0, (A36)

and

∂£
∂le(qe)

= ye (qe) f0
e (le (qe))

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#
(A37)

+l


P (qe)

∂Qij (qe)

∂le (qe)
� f0

e (le (qe))

�
Ne fe (qe)

+
k0 (qe)
le (qe)

∂ ln Qij (qe)

∂ ln le(qe)
�
R

Q j0 (q0e)
∂ ln v(q0e)
∂ ln le(qe)

dq0e

le (qe)
= 0, 8qo 2 Qo.

B.2.2 Social Welfare Weight

Unless otherwise specified, the following equations in this subsection are derived for any qo 2 Qo. Accord-

ing to ∂£
∂Vo(x) and yo(qo) = yo(qo) = 0, we have:

l =
Z

qo

G0(Vo(qo)) efo(qo)dqo. (A38)



Set

go(qo) =
G0(Vo(qo)) efo (qo)

l fo (qo)
(A39)

as the monetary marginal social welfare weight for qo agent of o occupation. Set:

ḡo(qo) =

R qo
qo

g(x) fo (x) dx
1 � Fo(qo)

(A40)

as the weighted monetary social welfare weight for agents whose abilities are higher than qe.

Substituting go(qo) into ∂£
∂Vo(qo)

gives

y0
o(qo)

lNo fo (qo)
= 1 � go(qo) (A41)

Taking integration and using the boundary conditions gives

�yo(qo)
lNo

=
Z qo

qo
[1 � go(x)] fo(x)dx (A42)

= [1 � ḡo(qo)] [1 � Fo(qo)] .

In addition, based on ∂£
∂d(qe)

, we have:

k (qe) = �ye (qe) f0
e (le (qe)) le (qe) µ(qe)#

P,cross
Q�ij

(qe) (A43)

= �ye (qe) P (qe) Qij (qe) [1 � te (qe)] (1 � ts) #P,cross
Q�ij

(qe) ,

where the second equation is derived by

f0
e (le (qe)) le (qe) =

P (qe) Qij (qe)

µ (qe)
[1 � te (qe)] (1 � ts) . (A44)

In addition, we have:

k0 (qe) = �
d
h
ye (qe) f0

e (le (qe)) le (qe) µ(qe)#
P,cross
Q�ij

(qe)
i

dqe
(A45)

= �

2
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y0
e (qe) f0

e (le (qe)) le (qe) µ(qe)#
P,cross
Q�ij

(qe) +

ye (qe) f0
e (le (qe))

1+#e
#e

l0e (qe) µ(qe)#
P,cross
Q�ij

(qe) +

ye (qe) f0
e (le (qe)) le (qe)

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

77775

= �f0
e (le (qe)) le (qe) µ(qe)#

P,cross
Q�ij

(qe)

2
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ye (qe)

1+#e
#e

l0e(qe)
le(qe)

+

y0
e (qe) + ye (qe)

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75

= �P (qe) Qij (qe) [1 � te (qe)] (1 � ts) #P,cross
Q�ij

(qe)

2

64
ye (qe)

1+#e
#e

l0e(qe)
le(qe)

+

y0
e (qe) + ye (qe)

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75 .



Substituting ye (qe) and y0
e (qe) in (A45) and (A43) with (A41) and (A42), we have:

k (qe) = lNe [1 � ḡe(qe)] [1 � Fe(qe)] f0
e (le (qe)) le (qe) µ(qe)#

P,cross
Q�ij

(qe)

= lNe [1 � ḡe(qe)] [1 � Fe(qe)] P (qe) Qij (qe) [1 � te (qe)] (1 � ts) #P,cross
Q�ij

(qe) ,

and

k0 (qe)
lNe fe (qe)

= �P (qe) Qij (qe) [1 � te (qe)] (1 � ts) #P,cross
Q�ij

(qe)

2

6664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥

2

4 1+#e
#e

l0e(qe)
le(qe)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

5

3

7775
. (A46)

B.3 Proof of Theorem 1

Unless otherwise specified, the following equations in this subsection are derived for any qo 2 Qo and

ts = 0.

(i) ∂£
∂Lw(qe)

= 0 implies:

P (qe)
∂Qij (qe)

∂Lw(qe)
=

l0

l
� k0 (qe)

lLw (qe) Ne fe (qe)

∂ ln Qij (qe)

∂ ln Lw(qe)
+

R
qe

j0 (q0e)
∂ ln v(q0e)
∂ ln Lw(qe)

dq0e

lLw (qe) Ne fe (qe)

=
l0

l
� k0 (qe) x

lLw (qe) Ne fe (qe)
+

j0 (qe) #v
Lw
(qe)

lLw (qe) Ne fe (qe)
,

where
R

qe
j0 (q0e)

∂ ln v(q0e)
∂ ln Lw(qe)

dq0e = j0 (qe) #v
Lw
(qe) since #v

Lw
(q0e, qe) is independent of q0e and

R
qe

j0 (q0e) dq0 = 0.

Substituting P (qe)
∂Qij(qe)
∂Lw(qe)

by Wµ (qe) gives:

Wµ (qe) =
l0

l
� k0 (qe) x

lLw (qe) Ne fe (qe)
+

j0 (qe) #v
Lw
(qe)

lLw (qe) Ne fe (qe)
. (A47)

Dividing both sides of the above equation by #v
Lw (qe)

Lw(qe)Ne fe(qe)
and integrating across qe gives:

W
Z

qe

µ (qe)
Lw (qe) Ne fe (qe)

#v
Lw
(qe)

dqe =
l0

l

Z

qe

Lw (qe) Ne fe (qe)
#v

Lw
(qe)

dqe �
Z

qe

k0 (qe)
l#v

Lw
(qe)

xdqe,

where we use
R

qe
j0 (q0e) dq0 = 0 again. Reformation of the above equation gives:

1 =

l0

l

R
qe

Lw(qe)Ne fe(qe)
#v

Lw (qe)
dqe

W
R

qe
µ (qe)

Lw(qe)Ne fe(qe)
#v

Lw (qe)
dqe

�

R
qe

k0(qe)
l#v

Lw (qe)
xdqe

W
R

qe
µ (qe)

L(qe)Ne fe(qe)
#v

Lw (qe)
dqe

(A48)

=

l0

l

R
qe

Lw(qe)Ne fe(qe)
#v

Lw (qe)
dqe

W
R

qe
µ (qe)

Lw(qe)Ne fe(qe)
#v

Lw (qe)
dqe

+
Z

qe

k (qe)
l

d x
#v

Lw (qe)
/dqe

W
R

Qe
µ (qe)

Lw(qe)Ne fe(qe)
#v

Lw (qe)
dqe

dqe,

where the second equation is derived by k(qe) = k(qe) = 0 and integration by parts. Note that under our



production function #v
Lw
(qe) is independent of qe (see e.g., (A10)). Thus, d x

#v
Lw (qe)

/dqe = 0 and (A48) implies:

1 =
l0

lWµ
. (A49)

According to (A35), we have:

1
f0

w(lw(qw))
xw(qw)

=
l

l0


1 � x0w (qw)

xw (qw)
yw(qw)

lNw fw (qw)
1 + #w

#w

�
.

Substitute f0
w(lw(qw))
xw(qw)

by [1 � tw (qw)]W:

1
1 � tw (qw)

=
Wl

l0


1 � x0w (qw)

xw (qw)
yw(qw)

lNw fw (qw)
1 + #w

#w

�
. (A50)

Use (A42), and (A49) to substitute yw(qw)
lNw fw(qw)

and l
l0 in (A50):

1
1 � tw (qw)

=
1
µ


1 + [1 � ḡw(qw)]

1 � Fw(qw)
fw(qw)

x0w (qw)
xw (qw)

1 + #w

#w

�
. (A51)

(ii) In the following analysis, we first derive an optimal profit tax formula in part (a). Then we simplify

the expression in parts (b) and (c).

(a) Divide both sides of (A37) by lNe fe (qe) P (qe)
∂Qij(qe)
∂Le(qe)

:

1 � f0
e (le (qe))

P (qe)
∂Qij(qe)
∂le(qe)

= � ye (qe)
lNe fe (qe)

f0
e(le(qe))

P (qe)
∂Qij(qe)
∂le(qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#

� k0 (qe)

lle (qe) P (qe)
∂Qij(qe)
∂le(qe)

Ne fe (qe)
+

j0 (qe) #v
le (qe)

lle (qe) P (qe)
∂Qij(qe)
∂le(qe)

Ne fe (qe)
,

where we use ∂ ln Qij(qe)
∂ ln le(qe)

= 1 and
R

Q j0 (q0e)
∂ ln v(q0e)
∂ ln le(qe)

dqe = j0 (qe) #v
le (qe) to simplify the expression. Moreover,

from the definitions of the elasticities,

Z

Q
j0 �q0e

� ∂ ln v (q0e)
∂ ln le (qe)

dqe = j0 (qe) #v
le (qe)

since #v
le (q

0
e, qe) is independent of q0e and

R
qe

j0 (q0e) dq0 = 0.

For the convenience of derivation, we define:

1 � ete (qe) ⌘
[1 � te (qe)] (1 � ts)

µ (qe)
=

f0
e (le (qe))

P (qe)
∂Qij(qe)
∂le(qe)

.



Then one has

ete (qe) = � ye (qe)
lNe fe (qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#

[1 � ete (qe)]

� k0 (qe)
lP (qe) Qij (qe) Ne fe (qe)

+
j0 (qe) #v

le (qe)

lP (qe) Qij (qe) Ne fe (qe)
,

where we use ∂ ln Qij(qe)
∂ ln le(qe)

= 1 to simplify the expression. In the same vein, we have

ete (qe)
1 � ete (qe)

= � ye (qe)
lNe fe (qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#
(A52)

� 1
1 � ete (qe)

1
P (qe) Qij (qe)


k0 (qe)

lNe fe (qe)
� j0 (qe)

lNe fe (qe)
#v

le (qe)

�

or

1
1 � ete (qe)

= 1 � ye (qe)
lNe fe (qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#
(A53)

� 1
1 � ete (qe)

1
P (qe) Qij (qe)


k0 (qe)

lNe fe (qe)
� j0 (qe)

lNe fe (qe)
#v

le (qe)

�
.

Combining (A52) and (A42) gives:

ete (qe)
1 � ete (qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
1 + #e

#e

2

4 µ (qe)
d ln Pij(Qij,Q�ij(qe),qe)

dqe
|Qij=Qij(qe)

+ x0e(qe)
xe(qe)

3

5

� 1
1 � ete (qe)

1
P (qe) Qij (qe)

k0 (qe)
lNe fe (qe)

+
1

1 � ete (qe)
1

P (qe) Qij (qe)

j0 (qe) #v
le (qe)

lNe fe (qe)
.

Using (A47) to substitute
j0(qe)#v

le (qe)

lNe fe(qe)
in the above equation,46 we have:

ete (qe)
1 � ete (qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
1 + #e

#e

2

4 µ (qe)
d ln Pij(Qij,Q�ij(qe),qe)

dqe
|Qij=Qij(qe)

+ x0e(qe)
xe(qe)

3

5 (A54)

� 1
1 � ete (qe)

1
P (qe) Qij (qe)

k0 (qe)
lNe fe (qe)

"
1 � x

#v
le (qe)

#v
Lw
(qe)

#

� 1
1 � ete (qe)

Lw (qe)
P (qe) Qij (qe)

l0

l


1 � l

l0
Wµ (qe)
1 � ts

�
#v

le (qe)

#v
Lw
(qe)

.

We now transform the three terms on the right side of the above equations one by one. First, substituting

46Equation (A47) suggests that
j0(qe)#v

le (qe)
lNe fe(qe)

=
hh

Wµ(q)
1�ts

� l0

l

i
Lw (qe) +

k0(qe)x
lNe fe(qe)

i
#v

le (qe)
#v

Lw (qe)
.



k0 (qe) with (A46), we have the following equation:47

� 1
1 � ete (qe)

1
P (qe) Qij (qe)

k0 (qe)
lNe fe (qe)

=
1 � te (qe)
1 � ete (qe)

#P,cross
Q�ij

(qe)

2

66664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥

2

64

1+#e
#e

l0e(qe)
le(qe)

+

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75

3

77775
. (A55)

Second, notice that Lw(qe)W
P(qe)Qij(qe)

= x
µ(qe)

and l0

lW = µ (see e.g., (A49)). The last term of (A54) equals:

� 1
1 � ete (qe)

Lw (qe)
P (qe) Qij (qe)

l0

l


1 � l

l0
Wµ (qe)
1 � ts

�
#v

le (qe)

#v
Lw
(qe)

(A56)

= � 1 � ts

1 � ete (qe)
x

µ (qe)
µ


1 � µ (qe)

µ

�
#v

le (qe)

#v
Lw
(qe)

= � x

1 � ete (qe)


µ

µ (qe)
� 1
�

#v
le (qe)

#v
Lw
(qe)

.

Substituting the second and third terms of the right side of (A54) by (A55) and (A56) gives:

1
1 � te (qe)

(A57)

=
1 + [1 � ḡe(qe)]

1�Fe(qe)
fe(qe)

1+#e
#e


µ (qe)

d ln Pij(Qij,Q�ij(qe),qe)
dqe

|Qij=Qij(qe) +
x0e(qe)
xe(qe)

�

µ (qe)

+#P,cross
Q�ij

(qe)

2

66664

[1 � ge(qe)]�

[1�ḡe(qe)][1�Fe(qe)]
fe(qe)

2

64

1+#e
#e

l0e(qe)
le(qe)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75

3

77775

"
1 � x

#v
le (qe)

#v
Lw
(qe)

#

+
1

1 � te (qe)


1 � µ

µ (qe)

�
x

#v
le (qe)

#v
Lw
(qe)

,

where we have substituted 1 � ete (qe) by 1�te(qe)
µ(qe)

.

Using RE (qe) ⌘ µ
µ(qe)

� 1 and

gIRE (qe) ⌘ #P,cross
Q�ij

(qe)

2

64[1 � ge(qe)]�
[1 � ḡe(qe)] [1 � Fe(qe)]

fe (qe)

2

64

1+#e
#e

l0e(qe)
le(qe)

+

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75

3

75 , (A58)

47Note that we consider the case with ts = 0.



we have

1
1 � te (qe)

=
1 + [1 � ḡe(qe)]

1�Fe(qe)
fe(qe)

1+#e
#e


µ (qe)

d ln Pij(Qij,Q�ij(qe),qe)
dqe

|Qij=Qij(qe) +
x0e(qe)
xe(qe)

�

µ (qe)

+gIRE (qe)

"
1 � x

#v
le (qe)

#v
Lw
(qe)

#

� 1
1 � te (qe)

xRE (qe)
#v

le (qe)

#v
Lw
(qe)

,

which is equivalent to

1
1 � te (qe)

=

1+[1�ḡe(qe)]
1�Fe(qe)

fe(qe)
1+#e

#e

"
µ(qe)

d ln Pij(Qij ,Q�ij(qe),qe)
dqe |Qij=Qij(qe)+

x0e(qe)
xe(qe)

#

µ(qe)
+ gIRE (qe)

h
1 � x

#v
le (qe)

#v
Lw (qe)

i

1 + RE (qe) x
#v

le (qe)

#v
Lw (qe)

. (A59)

(b) We now try to express the right side of the above equation in terms of parameters. Using (OA29), we

have:

1 � Fe(qe)
fe(qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#

=
1 � Fe(qe)

fe(qe)
1 + #e

#e

8
>>><

>>>:

µ(qe)#
P,cross
Q�ij

(qe)+1

#S
Qij

(qe)
d

dqe

h
ln Xe(qe)

µ(qe)

i
+ µ (qe)

d ln µ(qe)
dqe

+µ (qe) #P,cross
Q�ij

(qe)
(1+x 1+#e

#e ) d
dqe

h
ln Xe(qe)

µ(qe)

i
+ d ln[1�te(qe)]

dqe
1+#e

#e �#S
Qij

(qe)(1+ 1+#e
#e x)

9
>>>=

>>>;

=
1 � Fe(qe)

fe(qe)
d ln [µ (qe)� x]

dqe

1 + #e

#e
[µ (qe)� x]

+
1 � Fe(qe)

fe(qe)

1+#e
#e

d
dqe

ln Xe(qe)
µ(qe)

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘

2

64

µ(qe)#
P,cross
Q�ij

(qe)+1

#S
Qij

(qe)
1+#e

#e

�
⇣

1 + x 1+#e
#e

⌘

3

75

+
1 � Fe(qe)

fe(qe)
1 + #e

#e

µ (qe) #P,cross
Q�ij

(qe)
d ln[1�te(qe)]

dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ ,

where the third equation is derived by µ (qe)
d ln µ(qe)

dqe
= [µ (qe)� x] d ln[µ(qe)�x]

dqe
and combine terms multiplied

by d
dqe

ln Xe(qe)
µ(qe)

.

Notice that:

1 � Fe(qe)
fe (qe)

1+#e
#e

d
dqe

ln Xe(qe)
µ(qe)

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘ = H(qe)�

1 � Fe(qe)
fe (qe)

d ln [µ (qe)� x]
dqe

,



where H(qe) is given by (OA25). We have

1 � Fe(qe)
fe(qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#

=
1 � Fe(qe)

fe(qe)
d ln [µ (qe)� x]

dqe

1 + #e

#e

2

4µ (qe) +
#e

1 + #e
�

µ (qe) #P,cross
Q�ij

+ 1

#S
Qij

(qe)

3

5

+H(qe)
1 + #e

#e

2

4
µ (qe) #P,cross

Q�ij
+ 1

#S
Qij

(qe)
� #e

1 + #e
� x

3

5

+
1 � Fe(qe)

fe(qe)
1 + #e

#e

µ (qe) #P,cross
Q�ij

d ln[1�te(qe)]
dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ ,

where, according to #P,cross
Q�ij

= � 1
µ(qe)

+ #S
Qij

(qe), one has
µ(qe)#

P,cross
Q�ij

+1

#S
Qij

(qe)
= µ (qe). Therefore,

1 � Fe(qe)
fe(qe)

1 + #e

#e

"
µ (qe)

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

#
(A60)

=
1 � Fe(qe)

fe(qe)
d ln [µ (qe)� x]

dqe
+ H(qe)


1 + #e

#e
[µ (qe)� x]� 1

�

+
1 � Fe(qe)

fe(qe)
1 + #e

#e

µ (qe) #P,cross
Q�ij

d ln[1�te(qe)]
dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ .

Substituting l0e(qe)
le(qe)

in gIRE (qe) by (OA22) and utilizing (OA25), i.e.,

H(qe) =
1 � Fe(qe)

fe (qe)

2

4
1+#e

#e

d ln[Xe(qe)/µ(qe)]
dqe

1+#e
#e

h
1 � x#S

Qij
(qe)

i
� #S

Qij
(qe)

+
d ln [µ (qe)� x]

dqe

3

5 ,

we have:

gIRE (qe) = #P,cross
Q�ij

(qe)

2

6666664
[1 � ge(qe)]� [1 � ḡe(qe)]

2

6666664

1+#e
#e


1�x#S

Qij
(qe)

�
d ln[1�te(qe)]

dqe
1+#e

#e �#S
Qij

(qe)(1+ 1+#e
#e x)

1�Fe(qe)
fe(qe)

+ H(qe)

�

2

641 �
d ln

"
µ(qe)#P,cross

Q�ij
(qe)

#

dqe
d ln[µ(qe)�x]

dqe

3

75 [1�Fe(qe)]
fe(qe)

d ln[µ(qe)�x]
dqe

3

7777775

3

7777775
.



Notice that µ(qe)#
P,cross
Q�ij

(qe) + 1 = µ(qe)#S
Qij

(qe). We have
d ln

"
µ(qe)#P,cross

Q�ij
(qe)

#

dqe
d ln[µ(qe)�x]

dqe

=
#S

Qij
(qe)[µ(qe)�x]

µ(qe)#
P,cross
Q�ij

(qe)
and:

gIRE (qe) = #P,cross
Q�ij

(qe)

8
>>>><

>>>>:

[1 � ge(qe)]� [1 � ḡe(qe)]

2

66664

H(qe) +


1�x#S

Qij
(qe)

�
1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe

µ(qe)#Q�ij (qe)

+


1�x#S

Qij
(qe)

�
1+#e

#e
1�Fe(qe)

fe(qe)
d ln[1�te(qe)]

dqe
1+#e

#e �#S
Qij

(qe)(1+ 1+#e
#e x)

3

77775

9
>>>>=

>>>>;

. (A61)

Last, substituting 1�Fe(qe)
fe(qe)

1+#e
#e


µ (qe)

∂ ln P(Qij(qe),qe)
∂qe

+ x0e(qe)
xe(qe)

�
and gIRE (qe) in (A59) by (A60) and (A61),

respectively, we have, for any qe 2 Qe:

1 + RE (qe) x
#v

le (qe)

#v
Lw (qe)

1 � te (qe)
(A62)

=

1 + [1 � ḡe(qe)]

2

664

H(qe)
h

1+#e
#e

[µ (qe)� x]� 1
i
+

1�Fe(qe)
fe(qe)

"
d ln[µ(qe)�x]

dqe
+

1+#e
#e µ(qe)#

P,cross
Q�ij

(qe)
d ln[1�te(qe)]

dqe
1+#e

#e �#S
Qij

(qe)(1+ 1+#e
#e x)

#

3

775

µ (qe)

+

"
1 � x

#v
le (qe)

#v
Lw
(qe)

#

[1 � ge(qe)] #P,cross
Q�ij

(qe)

�
"

1 � x
#v

le (qe)

#v
Lw
(qe)

#
#P,cross

Q�ij
(qe) [1 � ḡe(qe)]

8
>>>>><

>>>>>:

H(qe) +


1�x#S

Qij
(qe)

�
1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe

µ(qe)#
P,cross
Q�ij

(qe)

+


1�x#S

Qij
(qe)

�
1+#e

#e
1�Fe(qe)

fe(qe)
d ln[1�te(qe)]

dqe
1+#e

#e �#S
Qij

(qe)(1+ 1+#e
#e x)

�

9
>>>>>=

>>>>>;

.

Notice that 1 � x
#v

le (qe)

#v
Lw (qe)

= 1
1�x#S

Qij
(qe)

. One can see the sum of terms multiplied by d ln[1�te(qe)]
dqe

of the above

equation equals zero. Moreover, the sum of terms multiplied by d ln[µ(qe)�x]
dqe

also equals zero. Last, using the

definition of IRE (qe) (see e.g., (38)), we have (A63):

1 + RE (qe) x
#v

le (qe)

#v
Lw (qe)

1 � te (qe)
=

1 + [1 � ḡe(qe)]
n

H(qe)
h

1+#e
#e

[µ (qe)� x]� 1
io

µ (qe)
(A63)

+

"
1 � x

#v
le (qe)

#v
Lw
(qe)

#

[1 � ge(qe)] #P,cross
Q�ij

(qe)

�
"

1 � x
#v

le (qe)

#v
Lw
(qe)

#
#P,cross

Q�ij
(qe) [1 � ḡe(qe)] H(qe),

Notice that 1 � x
#v

le (qe)

#v
Lw (qe)

= 1
1�x s�1

s
. Equation (A63) is equivalent to (36) in the Atkeson-Burstein economy.⌅



C Extensions and Robustness

C.1 Alternative Market and Taxation Specifications

In what follows, we address the relation of our results to 4 distinct issue that have been studied in the

literature. We do this through the lens of our model, and where needed, using the notation and features of

our setup to derive new results.

(i) Top Incomes: Market Power and Optimal Profit Tax. Taxes payed by top earners account for the vast

majority of income tax. Proposition 6 provides an analytic optimal top profit tax formula. We call en-

trepreneurs with qe � bqe the top entrepreneurs. We assume that the profit and sales tax rates in the real

economy for the top entrepreneurs are linear and lower than one. Then, we have the following result:

Proposition 6 Suppose that there exist bqe 2 Qe such that for qe � bqe, H (qe) = bH, µ (qe) = bµ and ge (qe) = bge are
constants. Then we have the following results in the Atkeson-Burstein economy:

(i) The optimal profit tax rate for qe � bqe is constant and satisfy:

1
1 � bte

=

1+(1�bge) bHe[ 1+#e
#e (bµ�x)�1]
bµ +

1� s
s�1

1
bµ

s
s�1�x (1 � bge)

⇣
1 � bH

⌘

1 � x
s

s�1�x
µ�bµ
bµ

; (A64)

(ii) Given s, bte decreases in I (increases in bµ) if:

bge < 1 � 1
2 · bH

. (A65)

Proof. See Online Appendix OC.6.

Formula (A64) generalizes the traditional top income tax formula. It generalizes the familiar top tax rate

result of Saez (2001) (where x = 0, µ = 1, I = 1, s ! •) by extending the technology and market structure.

Compared to Corollary 5 of Sachs et al. (2020) (where x = 0, µ = 1 and I = 1), this result highlights the effect

of market structure and superstar effects on the optimal top tax rate. Compared to Scheuer and Werning

(2017) (where µ = 1, I = 1 and s ! •), it demonstrates the interaction between superstar effect and market

structure on the optimal top tax rate.

Proposition 6 is powerful in the sense that it suggests that under some reasonable assumptions, one can

use original observable statistics like bHe to derive the optimal top profit tax rate and judge whether the top

profit tax should be increased with the changes of technology and market structure. A key question here,

considering the reallocation and indirect redistribution effects, is: should the government increase the top

profit tax rate with the rise of market power? Condition (A64) shows that whether the optimal top profit

tax rate increases crucially depends on the value of bHe. Specifically, if bge ! 0, condition (A65) is equivalent

to bHe > 1
2 . Condition (A65) is a sufficient but not necessary condition for bte to be increasing in bµ.48 At this

48In Online Appendix OC.2, we also provide a looser sufficient condition: bge < 1 � 1
x(1�µ s�1

s ) 1+#e
#e +1+

s
s�1 �xµ s�1

s
s

s�1 �x

�
bH

, where the

term in the bracket of the right side of the above inequality is larger than or equal to 2, because µ  s
s�1 .



stage, it is important to recall that the hazard ratios of top income in the United States is around 0.5 in 1992

and 1993 (Saez (2001)) and around 2
3 in 2005 (Diamond and Saez (2011)). In 2007, the hazard ratio of top

labor, capital and total incomes in the United States are around 0.62, 0.76 and 0.71, respectively (see e.g., Saez

and Stantcheva (2018)). In conclusion, empirical results suggests that in the U.S. condition (A65) is satisfied

and the top profit tax rate should increase when market power increases.

(ii) Span of Control and Optimal Top Profit Tax. Like in our model, Scheuer and Werning (2017) also

considers optimal income taxation in a Lucas (1978) span of control setting. They study the superstar effect

induced by the positive assortative matching between the ability of entrepreneurs and the scale of firms. In

their model, the span of control captures the magnitude of the superstar effect as it represents the extent to

which can entrepreneurs leverage the productivity of workers.

In our setting, Proposition 6 delivers interesting insights about how the span of control affects optimal

taxation. In the light of Scheuer and Werning (2017), an increase in x changes the elasticity of profits with

respect to the tax rate as well as the hazard ratio of profit. When I = 1 these two effects cancel each other

out such that the top profit tax rate is independent of x. To see this, notice that when I = 1, the markup is

uniform (µ = bµ = s
s�1 ) and formula (A64) is reduced to:

1
1 � bte

=
1 + (1 � bge) bH

h
1+#e

#e
(bµ � x)� 1

i

bµ
=

1
bµ

2

41 + (1 � bge)
1 � Fe(bqe)

fe

⇣
bqe

⌘ d ln Xe(bqe)

dbqe

s � 1
s

1 + #e

#e

3

5 , (A66)

where the second equality follows from the fact that bH = 1�Fe(bqe)

fe(bqe)

s�1
s

1+#e
#e

d ln Xe(bqe)
dbqe

1+#e
#e ( s

s�1�x)�1
. The equation above estab-

lishes that bte is independent of x in a monopoly competitive economy. In other words, the “neutrality” of

the span of control found by Scheuer and Werning (2017) still holds.

The “neutrality” of the span of control does not necessarily hold in a more general setting. As an

illustration, we consider a special case where the top markup is bµ = s
s�1 . We consider this case be-

cause s
s�1 is the theoretical maximum value of markup in our model. Substitute bHe in formula (A64) by

bH = 1
bµ�x� #e

1+#e

g0
e(bqe)

ge(bqe)
1�Fe(bqe)

fe(bqe)
. As the markup for qe > bqe is assumed to be constant and bµ = s

s�1 , one has:

1
1 � bte

=

1
bµ


1 + (1 � bge)

1�Fe(bqe)

fe(bqe)
d ln Xe(bqe)

dbqe

s�1
s

1+#e
#e

�

1 +
h s

s�1
s

s�1�x � 1
i
bµ�µ
bµ

.

It can be seen that in this case bte decreases in x, because the rising span of control enlarges the influence of

reallocation effect, which can be seen from the multiplier on RE (qe) in formula (35), i.e., x
s

s�1�x .

(iii) Market Structure, Indirect Redistribution, and Optimal Taxation. One interesting finding of this pa-

per is that the market structure is crucial for the optimal tax, and in particular for the indirect redistribution

effect of taxation. In many previous studies on endogenous prices and optimal taxation, taxes have a first-

order effect on relative prices and can thus be used to ease the incentive constraints and improve income

distribution (see e.g., Naito (1999); Stiglitz (2018); Sachs et al. (2020); Cui et al. (2021)). Specifically, when the



marginal productivity of the labor factor (wage) decreases with labor inputs, the planner can compress the

wage distribution by reducing the marginal tax rate of high-skilled agents and enhancing the high-skilled

agents’ labor supply. Saez (2004) argues that tax’s indirect redistribution effect collapses when agents make

endogenous human capital investments. In that case, agents determine their wages, and the tax’s effect on

prices becomes second order. In response to Saez (2004), Naito (2004) shows that when human capital is

imperfectly substitutable, the indirect redistribution effect is still in place.

Our findings contribute to this debate by demonstrating that the indirect redistribution of tax depends

on the market structure. Even when there is market power, there is indirect redistribution, but the amount

decreases as market power increases. In fact, the IRE completely disappears under monopoly, i.e., when the

firms set their prices alone. As long as prices are determined completely (under competition) or partially

(under oligopoly) outside the firm, there is a role for IRE. This discovery explains the seemingly contradic-

tory conclusions obtained by Saez (2004) and Naito (2004). Saez (2004) considers the case where the agent is

the monopolistic supplier of its own factors, Naito (2004) considers a competitive labor market.

(iv) Endogenous Social Welfare Weights. In most of the analysis above, we assume that the social wel-

fare weights are exogenous. We thus abstract from the influence of market power on the optimal taxation

through the social welfare weights. This allows us to highlight the other four elements.

Our analysis of the Laissez-faire economy suggests that the gross utility of entrepreneurs generally in-

creases with market power. As we see from Proposition 2, a rise in market power accompanied by an

increase in µ leads to a redistribution of income from workers to firms (mainly through a lower wage rate

W) as well as a decrease in welfare. If this is also the case under optimal taxation, then the marginal social

welfare weights for entrepreneurs will decrease which in turn increases the optimal profit tax rates. This

finding has been emphasized by previous studies (see e.g., Kushnir and Zubrickas (2019)). Moreover, the

non-linear tax system facilitates a transfer between entrepreneurs and workers, which also depends on the

social welfare function. Under a utilitarian social welfare function, the burden is indeterminate, whereas it

is determinate under a concave social welfare function, in which case market power plays a key role.

A reason for segregating the effect of endogenous social welfare weights is that a generalized social

welfare weight may depend on factors other than the gross utility, and those factors may also change with

the market structure (see Saez and Stantcheva (2016)). For example, a generalized social welfare weight

may depend on the revenue contribution of an entrepreneur relative to that of a worker (see Scheuer (2014)).

More generally, it depends on the gap between the social and private values of being an entrepreneur. By

segregating the endogeneity of the social welfare weights, the criterion in Proposition 5 becomes applicable.

Besides, we demonstrate that empirically, the optimal top profit tax rate increases with the markup. This

finding is in line with previous studies.

C.2 Alternative Technology Specifications

(i) Capital Investment. We do not explicitly model capital in our benchmark model. However, the the

problem can be modeled equivalently with capital in place of entrepreneurial effort. The most relevant

assumption is that part of the cost (or benefit) from factors cannot be deducted before the profit tax (ei-



ther because the cost is unobservable or legally excluded from the deductible costs). Formally, consider an

economy where the entrepreneur chooses labor inputs Lw and capital investment K, instead of effort:

max
K,Lw

Pij
�
Qij (K, Lw) , Q�ij (qe) , qe

�
Qij (K, Lw)� WLw � rK � fK (K, qe)� Te (ye)

Qij (K, Lw) is the firm-level production function of capital and labor inputs, r is the market price of capital,49

and fK (K, qe) is the unobservable cost of investment, which may depend on the entrepreneur’s type.

In the real economy, although the market price of capital (i.e., r) can be observed, the total opportu-

nity costs of investments are typically hard to measure. The unobservable part of cost is captured by

fK (K, qe), which may include the cost of raising and managing funds.50 An alternative explanation for

fK (K, qe) is the preference for asset (wealth). In that case, fK (K, qe) can be negative, which means in-

vestment directly generates positive utility. The common ground in these situations is that the elastic-

ity of investment may be finite, which is the key point of Saez and Stantcheva (2018), in which case,

ye = Pij
�
Qij (K, Lw) , Q�ij (qe) , qe

�
Qij (K, Lw)� WLw � rK.

The incomplete deductibility of investment is relevant to the real economy. For example, the interest of

debt is deductible before tax, but the equity investment is not. Equity investments affect the cash flow of

shareholders and generate costs, in which case, ye = Pij
�
Qij (K, Lw) , Q�ij (qe) , qe

�
Qij (K, Lw)� WLw. Then,

even if fK = 0 there are non-deductible capital costs before tax. That’s why the profits tax has often been

interpreted as a tax on capital on the production side (see e.g., chapter 8 in Myles (2008)).

In all the cases above, our main results continue to hold. Essentially, the key to the incentive problem

is the unobservability of inputs. Moreover, we can model both deductible and non-deductible inputs. The

model therefore captures the main elements behind the profit tax. It is worth noting that the optimal profit

tax formula provided in this paper is independent of factor inputs and therefore has a wider application.

(ii) Performance Pay and Optimal Profit Tax. In the real economy, the entrepreneur may only obtain a

part of the profit. We now show how profit sharing affects optimal taxation. Assuming that a portion (s) of

the company’s profits are paid to entrepreneurs through performance pay. The entrepreneur’s problem is:

Ve,ij (qe) ⌘ max
le,ij,Lw,ij

ce � fe (le)

s.t. ce,ij =
⇥
ye,ij � Te

�
ye,ij
�⇤

· sye,ij

= (1 � ts) Pij

⇣
Qij,

�
Q�ij (qe)

 
�i 6=i , qe

⌘
Qij � WLw,ij,

where s is the share of profit to the entrepreneur. We assume that the remaining profits are evenly distributed

among taxpayers (or households).

In this case, the planner’s problem remains the same and so is the constrained optimal allocation. The

49The model can easily be extended to be dynamic, where the introduction of K and r will be more intuitive (e.g., see Cui et al.
(2021)). Alternatively, one can consider a small open economy, where r is exogenous, or one can introduce a technology for the
production of capital, which will also fix r. In the latter case, we can assume that the final goods can be used as either consumption
goods or investments and the conversion rate between consumption and investment is one. Then r = 1, and the social resource
constraint is transformed to be

Q � Ne

Z

qe
K(qe) fe(qe)dqe � Â

o2{e,w}
No

Z

qo
co(qe) fo(qe)dqe � R � 0, (A67)

where K (qe) is the investment of qe firms.
50Under this illustration, fK (K, qe) can still be treated as the utility cost of entrepreneurial effort, where the entrepreneurs use

their knowledge to manage the factor inputs (more generally, one can take fK (K, Lw, qe)).



optimal taxation formula is modified to take performance pay into consideration. To see this, notice that

the tax wedges now satisfy ts (·) = ts, tw (qw) = T0
w (yw (qw)) and te (qe) = 1 � (1 � ts) [1 � T0

e (ye (qe))] · s.

Therefore, introducing s won’t change the effective tax rate on the effort of the entrepreneur but proportion-

ally increase 1 � T0
e (ye (qe)). Our main results therefore still hold.

(iii) Monopolistic Competition with Kimball Aggregation and Endogenous Markups. In our bench-

mark model, we consider a technology with constant elasticity of substitution. Even though markups are

endogenous, we find that tax policies do not alter the equilibrium markup. In this section, we consider a

technology with non-constant elasticity of substitution, i.e., using Kimball aggregation. We show taxes can

now affect markups. For tractability, we consider monopolistic competition and the second-best allocation.

The technology is described below:

1 =
Z

qe

c (qe)Y
✓

Q (qe)
Q/Ne

◆
dFe (qe) , (A68)

where Q (qe) = xe(qe)le (qe) Lw (qe)
x , Y (·) is a twice differentiable function, and Q is the quantity of final

goods. Under the above technology

P (qe) =
c (qe)Y0

⇣
Q(qe)
Q/Ne

⌘

R
qe

c (qe)Y0
⇣

Q(qe)
Q/Ne

⌘
Q(qe)
Q/Ne

dFqe (qe)
(A69)

and µ (qe) =
# (qe)

# (qe)� 1
with # (qe) = �

Y00
⇣

Q(qe)
Q

⌘
Q(qe)

Q

Y0
⇣

Q(qe)
Q

⌘ . (A70)

The markup µ (qe) is a function of Q(qe)
Q . According to Lemma 1, the incentive compatible condition of the

entrepreneur is:

V 0
e (qe) = f0

e (le (qe)) le (qe)


µ(qe)

c0 (qe)
c (qe)

+
x0e (qe)
xe (qe)

�
, 8qe 2 Qe. (A71)

The planner chooses {le (qe) , Lw (qe) , Ve (qe) , lw (qw) , Vw (qw) , Q}qe2Qe,qw2Qw
to maximize (5) subject to

the resource constraints (A68) and (13), the labor market clear condition (14), and the incentive conditions

(A71) and (26). As a comparison to the optimal profit tax under monopolistic competition in the benchmark

model, we now have the following proposition:

Proposition 7 Under monopolistic competition with Kimball aggregation, the effective tax rate on entrepreneurial
effort satisfies:

1 � 1�te(qe)
µ(qe)

1�te(qe)
µ(qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe (qe)

2

4
1+#e

#e

h
µ(qe)

c0(qe)
c(qe)

+ x0e(qe)
xe(qe)

i

+µ(qe)
∂ ln µ(qe)
∂ ln Q(qe)

c0(qe)
c(qe)

3

5 , (A72)

for any qe 2 Qe.

Proof. See Online Appendix OC.7.

Compared to the monopoly competitive case in the benchmark model (see e.g., equation (42)), the opti-

mal tax here takes the endogeneity of markups into consideration. When ∂ ln µ(qe)
∂ ln Q(qe)

> 0, the additional term

is positive, which suggests that higher markups generally require a higher tax rate. Then, our main find-

ing – the top profit tax rate should increase with the rise of markup – will remain unchanged with varying

elasticities of substitution.



(iv) Free Entry. In the current paper, we assume the number of incumbents in a market is exogenous. Thus,

our setup misses the impact of taxes on markups and efficiency through the extensive margin of entry, which

is important for policy in the real world. Nonetheless, we consider that fixing the number of incumbents is

a reasonable place to start the analysis, because introducing the extensive margin adds a complicated entry

game to the analysis, both analytically and computationally. In related work, De Loecker et al. (2019) ana-

lyzes a model with endogenous markups à la Atkeson and Burstein (2008) and with entry. The entry game

there builds on Berry (1992) and involves a loop to compare all possible alternative entry configurations.

In conjunction with incomplete information and optimal taxation, the solution would become intractable.

There is scope for future research to introduce the entry of firms and consider tax’s effect on both margins, so

as to give more detailed policy recommendations. There are several ways to introduce the extensive margin.

For example, one can introduce occupational choice as in Scheuer (2014) and Rothschild and Scheuer (2013).

Edmond et al. (2023) consider an economy with free entry and Kimball demand. Last, one can consider

entry by introducing a fringe of small businesses to each market.

(v) Uniform Income Tax. We currently consider different tax policies for labor income and profit. How-

ever, the government may not be able to perfectly distinguish labor income from profit. Consider therefore

a uniform tax on profit and labor income. The policy constraint leads to a rather complicated problem. As

an illustration, denote by qw (qe) the ability of a worker whose income is ye (qe) (i.e., ye (qe) = yw (qw (qe))).

Then the first-order conditions of the agents’ optimization imply:

1 � T0
w (ye (qe)) =

f0
w

⇣
ye(qe)

W{w(qw(qe))

⌘

W{w (qw (qe))
, and 1 � T0

e (ye (qe)) =
f0

e (le (qe))
P(qe)
µ(qe)

∂Qij(qe)
∂le(qe)

. (A73)

Therefore, under the uniform tax on labor income and profit, the following policy constraint should be

enforced: f0
w

⇣
ye(qe)

W{w(qw(qe))

⌘

W{w (qw (qe))
=

f0
e (le (qe))

P(qe)
µ(qe)

∂Qij(qe)
∂le(qe)

,

where ye(qe) = P
�
Qij(qe), qe

�
Qij(qe) � WLw(qe). Meanwhile, qw (qe) should be treated as an additional

variable chosen by the planner (see Fu et al. (2021) for a solution to this problem).

In addition to the complexity of the problem with uniform taxes, there is a second, conceptual reason,

why we solve differentiated taxes in our benchmark problem. Depending on how we interpret entrepreneur-

ship, part of the income of entrepreneurs is subject to corporate taxes which is clearly distinct from income

taxation. Of course, even with corporate taxation, entrepreneurs eventually need to declare profits as in-

come as well, but even then it is distinct from labor income. Therefore, the real world makes the case for

considering differentiated taxation. In fact, both differentiated and uniform taxation are contemplated in the

literature (see Scheuer (2014) and Rothschild and Scheuer (2013)).51 From our perspective, it is a reasonable

starting point to consider differentiated taxation to analyze the role of rising market power.

51Scheuer (2014) considers differential taxation on labor and profit income while Rothschild and Scheuer (2013) considers uni-
form taxation.
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ONLINE APPENDIX

OA Supplements to Environment

OA.1 Elasticity of Profit to the Skill

In this section, we provide elasticity of profit with respect to the skill. Remember that entrepreneur’s FOCs

imply:

f0
e (le (qe)) =


1 � T0

e

✓✓
µ (qe)

x
� 1
◆

WLw (qe)

◆�
WLw (qe)

x

1
le (qe)

,

and

WLw (qe) = (1 � ts) P (qe) Qij (qe)
x

µ (qe)
.

Take the derivative of both sides of the above equations with respect to q:
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where we use
Q0

ij(qe)
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Combine the above the equations:
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1�T0

e(ye(q))

µ0(qe)
x

µ(qe)
x �1

1+#e
#e


1

#S
Qij

(qe)
� x

�
�
h
1 � T00

e (ye(q))ye(q)
1�T0

e(ye(q))

i .

Last, notice that ye (qe) = WLw (qe)
⇣

µ(qe)
x � 1

⌘
. We have:

y0e (qe)
ye (qe)

=
µ0 (qe)

µ (qe)� x
+

L0
w (q)

Lw (q)
, 8qe 2 Qe. (OA3)

Combine the above two equations:

y0e (qe)
ye (qe)

=

1+#e
#e

#S
Qij

(qe)
d

dqe

h
ln Xe(qe)

µ(qe)

i
�


1 �
✓

1
#S

Qij
(qe)

� x

◆
1+#e

#e

�
µ0(qe)

x
µ(qe)

x �1

1+#e
#e


1

#S
Qij

(qe)
� x

�
�
h
1 � T00

e (ye(q))ye(q)
1�T0

e(ye(q))

i .



Use e#ye
1�te

(qe) = 1
1+#e

#e
1� s�1

s x
s�1

s
�
h
1� pT00e (ye)

1�T0e(ye)

i :

y0e (qe)
ye (qe)

= e#ye
1�te

(qe)

2

4
1+#e

#e
s�1

s

d
dqe


ln

Xe(qe)
µ (qe)

�
�
"

1 �
 

1
s�1

s

� x

!
1 + #e

#e

# µ0(qe)
x

µ(qe)
x � 1

3

5 .

OA.2 Solution to the Equilibrium

OA.2.1 Allocations and Prices

To simplify the expression, in the following analysis, we consider ts = 0. Besides, we use Xe(qe) =

A s�1
s xe(qe)

s�1
s c(qe) and fw(qw) = fe(qe) = 1 to shorten the expressions. Combination of (A4), (A5), and

(A1) gives:

le (qe) =

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s#e
#e+s

Lw (qe)
x(s�1)#e

#e+s [1 � te (qe)]
#es

s+#e . (OA4)

Substituting P(qe) and Qij (qe) in (A4) with (A1) and Qij (qe) = xe (qe) le (qe) Lw (qe)
x , respectively, we have:

Lw(qe) =
x

Wµ (qe)
c(qe)

h
xe(qe)le (qe) Lw (qe)

x
i s�1

s

✓
Q
Ne

◆ 1
s

[1 � te (qe)]
#e(s�1)

s+#e (OA5)

=
x

W

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s

Lw (qe)
x(s�1)(#e+1)

s+#e [1 � te (qe)]
#e(s�1)

s+#e ,

where we substitute le (qe) with (OA4) in the second equation.

Rearranging the above equation gives:

Lw(qe) =

✓
x

W

◆ s+#e
s+#e�x(s�1)(#e+1)

8
<

:
Xe(qe) [1 � te (qe)]

(s�1)#e
s(#e+1)

µ (qe)

✓
Q
Ne

◆ 1
s

9
=

;

s(#e+1)
s+#e�x(s�1)(#e+1)

. (OA6)

Substituting the above equation into (OA4), we have:

P(qe)Qij(qe) = µ (qe)

✓
x

W

◆ x(s�1)(#e+1)
#e+s�x(s�1)(#e+1)

8
<

:
Xe(qe) [1 � te (qe)]

#e(s�1)
s(#e+1)

µ (qe)

✓
Q
Ne

◆ 1
s

9
=

;

s(#e+1)
#e+s�x(s�1)(#e+1)

(OA7)

and

le (qe) =

✓
x

W

◆ x(s�1)#e
s+#e�x(s�1)(#e+1)

8
<

:
Xe(qe) [1 � te (qe)]

s�x(s�1)
s

µ (qe)

✓
Q
Ne

◆ 1
s

9
=

;

s#e
#e+s�x(s�1)(#e+1)

. (OA8)

Equation (A3) gives:

lw (qw) = {Wxw (qw) [1 � tw (qw)]}#w . (OA9)

The three equations above together with (A7) and (A8) solve the symmetric equilibrium allocation

{Lw(qe), le (qe) ,lw (qw)}, price system {P(qe),W}, and total output Q. Lastly, one can derive other alloca-



tions with individuals’ budget constraints. See below for details.

For later use, we define:

A1 =
Z

qe

Nµ (qe)

2

4Xe(qe) [1 � te (qe)]
(s�1)#e
s(#e+1)

µ (qe) N
1
s

e

3

5

s(#e+1)
#e+s�x(s�1)(#e+1)

dqe, (OA10)

A2 =
Z

N

2

4Xe(qe) [1 � te (qe)]
(s�1)#e
s(#e+1)

µ (qe) N
1
s

e

3

5

s(#e+1)
#e+s�x(s�1)(#e+1)

dqe,

A3 = Nwx#w

Z

qw

x (qw)
#w+1 [1 � tw (qw)]

#w dqw.

Substituting Lw(qe) in (A4) with (OA6), we have:

P(qe)Qij(qe) = µ (qe)

✓
x

W

◆ x(s�1)(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s�x(s�1)(#e+1)

(OA11)

⇥ [1 � te (qe)]
(s�1)#e

#e+s�x(s�1)(#e+1) .

Substituting P(qe)Qij(qe) in (A8) with (OA11), we have

Q =
Z

qe

Neµ (qe)

✓
x

W

◆ x(s�1)(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s�x(s�1)(#e+1)

[1 � te (qe)]
(s�1)#e

#e+s�x(s�1)(#e+1) dqe,

which gives the following equation by the definition of A1:

Q =

✓
x

W

◆ x(#e+1)
1�x(#e+1)

A
s+#e�x(s�1)(#e+1)

1�x(#e+1)
1

s�1
1 . (OA12)

Similarly, substituting Lw(qe) in (A7) with (OA6), we have the aggregate labor demand

LD ⌘
✓

x

W

◆ 1
1�x(#e+1)

(A1)
#e+1

(s�1)[1�x(#e+1)] A2. (OA13)

On the other hand, according to (A7) and (OA9), we have the aggregate labor supply

LS ⌘ Nw [W]#w
Z

qw

x (qw)
#w+1 fw(qw)dqw =


W
x

�#w

A3. (OA14)

Combining (OA13) and (OA14) gives


W
x

�#w+ 1
1�x(#e+1)

= (A1)
#e+1

(s�1)[1�x(#e+1)]
A2

A3
,

that is

W = x


(A1)

#e+1
(s�1)[1�x(#e+1)]

A2

A3

� 1
#w+ 1

1�x(#e+1) . (OA15)



Lastly, substituting W in (OA12) with (OA15), we have

Q =

2

4 A3

A2A
#e+1

(s�1)[1�x(#e+1)]
1

3

5

1
#w+ 1

1�x(#e+1)

x(#e+1)
1�x(#e+1)

A
#e+s�x(s�1)(#e+1)
(s�1)[1�x(#e+1)]

1 . (OA16)

Then we can derive lw(qw), Lw(qe), and le (qe) by substituting Q and W into (OA6), (OA8), and (OA9).

Moreover, by definition, we have

Qij (qe) = xe(qe)

✓
x

W

◆ xs(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)x+s#e
#e+s�x(s�1)(#e+1)

[1 � te (qe)]
s#e

s+#e�x(s�1)(#e+1) , (OA17)

and

P(qe) =
µ (qe)
xe(qe)

✓
x

W

◆ �x(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s�s(#e+1)x
#e+s�x(s�1)(#e+1)

[1 � te (qe)]
s�x(s�1)(#e+1)

#e+s�x(s�1)(#e+1) . (OA18)

According to the above results, we have:

d ln le (qe)
dqe

=
d ln Xe(qe)/µ(qe)

dqe
+ s�x(s�1)

s
d ln[1�te(qe)]

dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘ ,

d ln Lw (qe)
dqe

=
1+#e

#e

d ln Xe(qe)/µ(qe)
dqe

+ s�1
s

d ln[1�te(qe)]
dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘ ,

d ln Qij (qe)

dqe
=

d ln xe(qe)
dqe

+

⇣
x + #e

1+#e

⌘
d ln Xe(qe)/µ(qe)

dqe
+ d ln[1�te(qe)]

dqe

1
s + s�1

s

⇣
1

1+#e
� x
⌘ ,

d ln
⇥
Qij (qe) P(qe)

⇤

dqe
=

1�s
s

⇣
x + #e

1+#e

⌘
d ln µ(qe)

dqe
+ d ln Xe(qe)

dqe

1
s + s�1

s
1

1+#e
� x

+
(s � 1) #e

1+#e

d ln[1�te(qe)]
dqe

1 + (s � 1) 1
1+#e

� x
.

Moreover, we have:

d ln ye (qe)
dqe

=
d ln µ(qe)�x

x WLw (qe)

dqe
=

d ln [µ (qe)� x]
dqe

+
d ln Lw (qe)

dqe

=
d ln [µ (qe)� x]

dqe
+

d ln Xe(qe)/µ(qe)
dqe

+ s�1
s

#e
1+#e

d ln[1�te(qe)]
dqe

1 � s�1
s

⇣
#e

1+#e
+ x
⌘



and

x0e(qe)
xe(qe)

+ µ (qe)
d ln Pij(Qij, Q�ij (qe) , qe)

dqe
|Qij=Qij(qe)

=
x0e(qe)
xe(qe)

+ µ (qe)

⇢
c0(qe)
c(qe)

+


s � 1

s
� 1

µ (qe)

� d ln Qij (qe)

dqe

�

=
x0e(qe)
xe(qe)

+ µ (qe)

⇢
c0(qe)
c(qe)

+


s � 1

s
� 1

µ (qe)

� 
d ln xe(qe)

dqe
+

d ln le(qe)
dqe

+ x
d ln Lw(qe)

dqe

��

= µ (qe)
X0(qe)
X(qe)

+


s � 1

s
µ (qe)� 1

� 
d ln le(qe)

dqe
+ x

d ln Lw(qe)
dqe

�

= µ (qe)
X0(qe)
X(qe)

+


s � 1

s
µ (qe)� 1

� 2

4

⇣
1 + x 1+#e

#e

⌘
d ln Xe(qe)/µ(qe)

dqe
+ d ln[1�te(qe)]

dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘

3

5

= [µ (qe)� x]
d ln [µ (qe)� x]

dqe
+

2

4
h
µ (qe)�

⇣
#e

1+#e
+ x
⌘i

d ln Xe(qe)/µ(qe)
dqe

+
⇥

s�1
s µ (qe)� 1

⇤ #e
1+#e

d ln[1�te(qe)]
dqe

3

5

1 � s�1
s

⇣
#e

1+#e
+ x
⌘

OA.2.2 Skill Gap

To derive optimal profit tax formula in termes of parameters, we need d ln Lw(qe)
dqe

, d ln le(qe)
dqe

and d ln ye(qe)
dqe

in

terms of qe and profit tax rate. The entrepreneur’s choice of labor inputs satisfies (A4), i.e., WLw(qe) =
x

µ(qe)
P(qe)Qij(qe). Substitute P(qe) in (A4) by the inverse demand function (A6), and take the total differential

on both sides of the derived equation:

d ln Lw (qe)
dqe

=
d ln c(qe)/µ (qe)

dqe
+


1

µ (qe)
+ #P,cross

Q�ij
(qe)

� 
x0e (qe)
xe (qe)

+
d ln le (qe)

dqe
+ x

d ln Lw (qe)
dqe

�
. (OA19)

Rearrange the above equation:

d ln Lw (qe)
dqe

=

d ln c(qe)/µ(qe)
dqe

+
h

1
µ(qe)

+ #P,cross
Q�ij

(qe)
i

x0e(qe)
xe(qe)

1 �
h

1
µ(qe)

+ #P,cross
Q�ij

(qe)
i

x
(OA20)

+

1
µ(qe)

+ #P,cross
Q�ij

(qe)

1 �
h

1
µ(qe)

+ #P,cross
Q�ij

(qe)
i

x

d ln le (qe)
dqe

=
1

1 � x#S
Qij

(qe)

d ln Xe(qe)/µ (qe)
dqe

+
#S

Qij
(qe)

1 � x#S
Qij

(qe)

l0e (qe)
le (qe)

,

where #S
Qij

(qe) = 1
µ(qe)

+ #P,cross
Q�ij

(qe) = s�1
s .

The entrepreneurial effort le (qe) satisfies the first-order condition (A5), i.e., P(qe)Qij(qe)
µ(qe)

[1 � te (qe)] =

le (qe)
1+ 1

#e , where te (qe) = T0(ye (qe)). Notice that (A5) and (A4) imply:

WLw(qe)
x

[1 � te (qe)] = le (qe)
1+ 1

#e .



We have ✓
1 +

1
#e

◆
d ln le (qe)

dqe
=

d ln Lw (qe)
dqe

+
d ln [1 � te (qe)]

dqe
. (OA21)

Combination of (OA20) and (OA21) delivers:

d ln le (qe)
dqe

=
d ln Xe(qe)/µ(qe)

dqe
+
⇥
1 � x s�1

s

⇤ d ln[1�te(qe)]
dqe

1+#e
#e

�
1 � x s�1

s

�
� s�1

s

(OA22)

Combination of firm’s first-order condition (A4) and ye (qe) = Pij (qe) Qij (qe) (1 � ts)�WLw,ij (qe) gives:

ye (qe) =
µ (qe)� x

x
WLw(qe).

Take the total differential on both sides of the above equation:

d ln ye (qe)
dqe

=
d ln [µ (qe)� x]

dqe
+

d ln Lw (qe)
dqe

(OA23)

=
d ln [µ (qe)� x]

dqe
+

✓
1 +

1
#e

◆
d ln le (qe)

dqe
� d ln [1 � te (qe)]

dqe

=

1+#e
#e

1
#S

Qij
(qe)

d ln[Xe(qe)/µ(qe)]
dqe

+ d ln[1�te(qe)]
dqe

1+#e
#e

✓
1

#S
Qij

(qe)
� x

◆
� 1

+
d ln [µ (qe)� x]

dqe
,

where the second and third equations are derived by (OA21) and (OA22).

Therefore,

d ln yo
e (qe)

dqe
=

1+#e
#e

1
#S

Qij
(qe)

d ln[Xe(qe)/µ(qe)]
dqe

1+#e
#e

✓
1

#S
Qij

(qe)
� x

◆
� 1

+
d ln [µ (qe)� x]

dqe
,

and

g0
e (qe)

ge (qe)
=

d ln yo
e (qe)

dqe

1
#

yo
e

1�te
(qe)

#e

1 + #e
(OA24)

=

2

6664

1+#e
#e

1
#S

Qij
(qe)

d ln[Xe(qe)/µ(qe)]
dqe

1+#e
#e

✓
1

#S
Qij

(qe)
� x

◆
� 1

+
d ln [µ (qe)� x]

dqe

3

7775
1

#
yo

e
1�te

(qe)

#e

1 + #e

and

H(qe) =
1 � Fe(qe)

fe (qe)

2

6664

1+#e
#e

1
#S

Qij
(qe)

d ln[Xe(qe)/µ(qe)]
dqe

1+#e
#e

✓
1

#S
Qij

(qe)
� x

◆
� 1

+
d ln [µ (qe)� x]

dqe

3

7775
=

1 � Fe(qe)
fe (qe)

g0
e (qe)

ge (qe)
#

yo
e

1�te
(qe)

1 + #e

#e

(OA25)



Under the Atkeson-Burstein economy, equation (OA24) is equivalent to (33).

H(qe) is the hazard ratio of profit ( 1�Fe(qe)
fe(qe)

d ln ye(qe)
dqe

) when the profit tax rate is constant, i.e., t0
e (qe) = 0.

Combination of (OA25) and (OA23) implies:

H(qe) =
1 � Fe(qe)

fe (qe)

2

6664
d ln ye (qe)

dqe
�

d ln[1�te(qe)]
dqe

1+#e
#e

✓
1

#S
Qij

(qe)
� x

◆
� 1

3

7775
. (OA26)

We now derive a more explicit expression of µ (qe)
d ln Pij(Qij,Qij(qe),qe)

dqe
|Qij=Qij(qe) +

x0e(qe)
xe(qe)

. Remind that
d ln Pij(Qij,Qij(qe),qe)

dqe
|Qij=Qij(qe) =

c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)
d ln Qij(qe)

dqe
(see e.g., (A12)), where:

d ln Qij (qe)

dqe
=

x0e (qe)
xe (qe)

+
d ln le (qe)

dqe
+ x

d ln Lw (qe)
dqe

(OA27)

=
x0e (qe)
xe (qe)

+

✓
1 + x

1 + #e

#e

◆
d ln le (qe)

dqe
� x

d ln [1 � te (qe)]
dqe

=
x0e (qe)
xe (qe)

+
1

1 � x#S
Qij

(qe)

l0e (qe)
le (qe)

+
x

1 � x#S
Qij

(qe)

d
dqe

ln
Xe(qe)
µ (qe)

.

The second and third equations are derived by (OA21) and (OA20). Substitute l0e(qe)
le(qe)

in (OA27) by (OA22):

d ln Qij (qe)

dqe
=

x0e (qe)
xe (qe)

+

⇣
1 + x 1+#e

#e

⌘
d

dqe
ln Xe(qe)

µ(qe)
+ d ln[1�te(qe)]

dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ . (OA28)

We have:

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) =

c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)
d ln Qij (qe)

dqe

=
c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)


x0e (qe)
xe (qe)

+


1 + x
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#e

�
l0e (qe)
le (qe)

� x
d ln [1 � te (qe)]

dqe

�

=
c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)

2

4 x0e (qe)
xe (qe)

+
1

1 � x#S
Qij

(qe)

l0e (qe)
le (qe)

+
x

1 � x#S
Qij

(qe)

d ln Xe(qe)
µ(qe)

dqe

3

5 .



Substitute d ln Qij(qe)
dqe

by (OA28):

µ (qe)
d ln Pij

�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

= µ (qe)


c0(qe)
c(qe)

+ #P,cross
Q�ij

(qe)
d ln Qij (qe)

dqe

�
+

x0e (qe)
xe (qe)

= µ (qe)
c0(qe)
c(qe)

+
h
µ (qe) #P,cross

Q�ij
(qe) + 1

i x0e (qe)
xe (qe)

+

µ (qe) #P,cross
Q�ij

(qe)

⇣
1 + x 1+#e

#e

⌘
d

dqe
ln Xe(qe)
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+ d ln[1�te(qe)]

dqe
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Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ ,

where

µ (qe)
c0(qe)
c(qe)

+
h
µ (qe) #P,cross

Q�ij
(qe) + 1

i x0e (qe)
xe (qe)

= µ (qe)
c0(qe)
c(qe)

+ µ (qe) #S
Qij

(qe)
x0e (qe)
xe (qe)

= µ (qe)
d

dqe


ln

Xe(qe)
µ (qe)

�
+ µ (qe)

d ln µ (qe)
dqe

=
µ (qe) #P,cross

Q�ij
(qe) + 1

#S
Qij

(qe)

d
dqe


ln

Xe(qe)
µ (qe)

�
+ µ (qe)

d ln µ (qe)
dqe

.

The first and third equations of the above equations are derived by #P,cross
Q�ij

(qe) = � 1
µ(qe)

+ s�1
s , and the

second equation is derived by Xe(qe) = A s�1
s c (qe) xe (qe)

s�1
s . In conclusion,

µ (qe)
d ln Pij

�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

(OA29)

=
µ (qe) #P,cross

Q�ij
(qe) + 1

#S
Qij

(qe)

d
dqe


ln

Xe(qe)
µ (qe)

�
+ µ (qe)

d ln µ (qe)
dqe

+µ (qe) #P,cross
Q�ij

(qe)

⇣
1 + x 1+#e

#e

⌘
d

dqe

h
ln Xe(qe)

µ(qe)

i
+ d ln[1�te(qe)]

dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘

= µ (qe)
d ln Xe(qe)

dqe
+
h
µ (qe) #S

Qij
(qe)� 1

i
⇣

1 + x 1+#e
#e

⌘
d

dqe
ln Xe(qe)

µ(qe)
+ d ln[1�te(qe)]

dqe

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ .

When t0
e (qe) = 0,

µ (qe)
d ln Pij

�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

= µ (qe)
d ln Xe(qe)

dqe
+
h
µ (qe) #S

Qij
(qe)� 1

i
⇣

1 + x 1+#e
#e

⌘
d

dqe

h
ln Xe(qe)

µ(qe)

i

1+#e
#e

� #S
Qij

(qe)
⇣

1 + 1+#e
#e

x
⌘ .



By (A6), we have:

d ln Pij(Qij, Qij (qe) , qe)

dqe
|Qij=Qij(qe) =

c0(qe)
c(qe)

+


s � 1

s
� 1

µ (qe)

� d ln Qij (qe)

dqe
,

where, by definition,

d ln Qij (qe)

dqe
=

d ln xe(qe)
dqe

+
d ln le(qe)

dqe
+ x

d ln Lw(qe)
dqe

=
s

s � 1

2

4d ln µ (qe)
dqe

� d ln xe(qe)
dqe

+
s (#e + 1)

h
d ln Xe(qe)

dqe
� d ln µ(qe)

dqe

i

#e + s � x (s � 1) (#e + 1)

3

5

+
s#e

d ln[1�te(qe)]
dqe

s + #e � x (s � 1) (#e + 1)
.

Thus,

x0e(qe)
xe(qe)

+ µ (qe)
d ln Pij(Qij, Q�ij (qe) , qe)

dqe
|Qij=Qij(qe) (OA30)

=
s (#e + 1) [µ (qe)� x]� s#e

#e + s � x (s � 1) (#e + 1)
d ln X(qe)

dqe

�
(s � 1) [#e + x (#e + 1)]

⇥
µ (qe)� s

s�1
⇤

#e + s � x (s � 1) (#e + 1)
d ln µ (qe)

dqe

+
#e [(s � 1) µ (qe)� s]

s + #e � x (s � 1) (#e + 1)
d ln [1 � te (qe)]

dqe
.

Substitute
h
µ (qe)

∂ ln P(Qij(qe),qe)
∂qe

+ x0e(qe)
xe(qe)

i
in V 0

e (qe) = le(qe)
1+#e

#e

h
µ (qe)

∂ ln P(Qij(qe),qe)
∂qe

+ x0e(qe)
xe(qe)

i
:

V 0(qe) = le(qe)
1+#e

#e

2

6664

s(#e+1)µ(qe)�s#e�xs(#e+1)
#e+s�x(s�1)(#e+1)

d ln X(qe)
dqe

� (s�1)[#e+x(#e+1)][µ(qe)� s
s�1 ]

#e+s�x(s�1)(#e+1)
d ln µ(qe)

dqe

+ #e[(s�1)µ(qe)�s]
s+#e�x(s�1)(#e+1)

d ln[1�te(qe)]
dqe

3

7775
, 8qe 2 Qe.

OA.2.3 The Laissez-faire Economy

Gross Utility. Note that 1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘

, #e + s � x (s � 1) (#e + 1) and s
s�1 �

⇣
#e

1+#e
+ x
⌘

are posi-

tive under condition (24). Under such a condition, whether le (qe), Lw (qe), Qij (qe), Qij (qe) P(qe) and V(qe)

increases with qe is determined by the relative change of Xe(qe) to µ (qe). In particular, we have

d ln V(qe)
dqe

=

2

64

µ(qe)

µ(qe)�(x+ #e
1+#e )

�
s

s�1
s

s�1�(x+ #e
1+#e )

3

75
µ0 (qe)
µ (qe)

+
s

s�1
d ln Xe(qe)

dqe

s
s�1 �

⇣
#e

1+#e
+ x
⌘

�
s

s�1
d ln Xe(qe)

dqe

s
s�1 �

⇣
#e

1+#e
+ x
⌘ ,



where the second inequality is derived by µ (qe)  s
s�1 . Thus, d ln V(qe)

dqe
increases with d ln Xe(qe)

dqe
and introduc-

ing market power inequality rises d ln V(qe)
dqe

.

We also have:

V 0
e (qe) = le (qe) f0 (le (qe))


µ (qe)

∂ ln P(Qij(qe), qe)

∂qe
+

x0e(qe)
xe(qe)

�
, (OA31)

with

µ (qe)
d ln Pij(Qij, Qij (qe) , qe)

dqe
|Qij=Qij(qe) +

x0e(qe)
xe(qe)

(OA32)

= µ (qe)

⇢
c0(qe)
c(qe)

+


s � 1

s
� 1

µ (qe)

� d ln Qij (qe)

dqe

�
+

x0e(qe)
xe(qe)

=
s (#e + 1) [µ (qe)� x]� s#e

#e + s � x (s � 1) (#e + 1)
d ln Xe(qe)

dqe

+
(s � 1) [#e + x (#e + 1)]

⇥
s

s�1 � µ (qe)
⇤

#e + s � x (s � 1) (#e + 1)
d ln µ (qe)

dqe
.

Notice that #e + s� x (s � 1) (#e + 1) is positive under condition (24). The entrepreneurial skill gap increases

with d ln Xe(qe)
dqe

. Moreover, since µ (qe)  s
s�1 , the second term on the right side of (OA32) is positive under

condition (24), which suggests that the qe-type entrepreneur’s skill gap increases in d ln µ(qe)
dqe

.

Technology and Equilibrium. xe (·) and c (·) have different economic meanings. They can refer to quantity-

augmenting and quality-augmenting (Rosen (1981)), ability and talent (Sattinger (1975b)), and effort-augmenting

and total-productivity-augmenting (non-effort-augmenting) elements (Ales et al. (2017)), all of which catch

the difference between an entrepreneur and a worker.

The expressions for allocations and prices in Appendix A.1 show that Qij(qe) and P(qe) are generally

dependent on the specific values of xe(qe) and c(qe) instead of only depending on the value of Xe(qe) =

A s�1
s xe(qe)

s�1
s c(qe).

Consider the economy without taxes. According to (OA17) and (OA18), we have:

Qij(qe) = xe(qe)

✓
x

W

◆ xs(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)x+s#e
#e+s�x(s�1)(#e+1)

,

and

P(qe) =
µ (qe)
xe(qe)

✓
x

W

◆ �x(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s�s(#e+1)x
#e+s�x(s�1)(#e+1)

, 8qe 2 Q.

On the other hand, given Xe(qe), we see that P(qe)Qij(qe), Lw(qe), le(qe), and Ve(qe) are independent of

the specific values of c(qe) and xe(qe). According to (OA6) to (OA8), we have the following results for any



qe 2 Qe:

Lw(qe) =

✓
x

W

◆ s+#e
s+#e�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
s+#e�x(s�1)(#e+1)

,

P(qe)Qij(qe) = µ (qe)

✓
x

W

◆ x(s�1)(#e+1)
#e+s�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s�x(s�1)(#e+1)

,

le (qe) =

✓
x

W

◆ x(s�1)#e
s+#e�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s#e
#e+s�x(s�1)(#e+1)

,

In addition, by ce(qe) = P(qe)Qij(qe)� WLw,ij(qe) and V(qe) = ce(qe)� f (le(qe)), we have:

V(qe) =


µ (qe)� x � #e

1 + #e

�
f0 (le(qe)) le(qe) (OA33)

=


µ (qe)� x � #e

1 + #e

� ✓
x

W

◆ x(s�1)(#e+1)
s+#e�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s�x(s�1)(#e+1)

and

ce(qe) = [µ (qe)� x]

✓
x

W

◆ x(s�1)(#e+1)
s+#e�x(s�1)(#e+1)

"
Xe(qe)
µ (qe)

✓
Q
Ne

◆ 1
s

# s(#e+1)
#e+s�x(s�1)(#e+1)

. (OA34)

Similarly, one can see that W, lw (qw), and Vw (qw) are also only dependent on Xe(qe).

Lastly, we find that given d ln Xe(qe)
dqe

, V0(qe)
V(qe)

is independent of the specific values of c(qe) and xe(qe). Com-

bining (OA31) and (OA32) gives:

V 0(qe) = [le(qe)]
1+#e

#e

2

4
s(#e+1)µ(qe)�s#e�xs(#e+1)

#e+s�x(s�1)(#e+1)
d ln Xe(qe)

dqe

� (s�1)[#e+x(#e+1)][µ(qe)� s
s�1 ]

#e+s�x(s�1)(#e+1)
d ln µ(qe)

dqe

3

5 , 8qe 2 Qe.

Combining (OA33) and (OA31) gives

V 0(qe)
V(qe)

=
µ (qe)

d ln Pij(Qij,Qij(qe),qe)
dqe

|Qij=Qij(qe) +
x0e(qe)
xe(qe)

µ (qe)� x � #e
1+#e

(OA35)

=

s(#e+1)[µ(qe)�x]�s#e
#e+s�x(s�1)(#e+1)

d ln Xe(qe)
dqe

+
(s�1)[#e+x(#e+1)][ s

s�1�µ(qe)]
#e+s�x(s�1)(#e+1)

d ln µ(qe)
dqe

µ (qe)� x � #e
1+#e

,

where the second equation is derived by (OA32) and (OA31), qe 2 Qe. Specially, when markup is constant,

we have
V 0(qe)
V(qe)

=
s (#e + 1)

#e + s � x (s � 1) (#e + 1)
d ln Xe(qe)

dqe
, 8qe 2 Qe.



OA.3 Proof of Proposition 1

Part 1 of Proposition 1 can be derived by (16) and (20). We now prove part 2. By (OA16), (OA15), and

(OA14), we have

n(I) , WL
xQ

=
A2

A1
, (OA36)

where L is the aggregate labor input. Substituting A1 and A2 by (OA10), we have

n(I) =

R
fe(qe)


xe(qe)

s�1
s c(qe)

µ(qe)

� s(#e+1)
#e+s�x(s�1)(#e+1)

dqe

R
qe

fe (qe) µ (qe)


xe(qe)

s�1
s c(qe)

µ(qe)

� s(#e+1)
#e+s�x(s�1)(#e+1)

dqe

. (OA37)

For the convenience of analysis, define

m (qe) ⌘ fe (qe)
h

xe(qe)
s�1

s c(qe)
i s(#e+1)

#e+s�x(s�1)(#e+1) ,

g(qe, I) ⌘


1
µ (qe)

�(s�1) #e+x(#e+1)
#e+s�x(s�1)(#e+1)

,

fs(qe, I) ⌘ g(qe, I)m (qe)R
qe

g(qe, I)m (qe) dqe
, 8qe 2 Qe.

Then we have:

n (I) =
Z

qe

fs(qe, I)
µ (qe)

dqe. (OA38)

In addition,

dn(I)
d ln I

(s�1)(#e+1)
#e+s�x(s�1)(#e+1)

=
Z

qe

fs(qe, I)

2

4
✓

1 +
1

s � 1

◆
1

µ (qe)
� n (I)

✓
1 � 1

1 + #e
+ x

◆� d ln
h

1
µ(qe)

i

d ln I

3

5 dq

=

✓
1

s � 1
+

1
1 + #e

� x

◆ Z

qe

fs(qe, I)
1

µ (qe)

d ln
h

1
µ(qe)

i

d ln I

+

✓
#e

1 + #e
+ x

◆ Z

qe

fs(qe, I)


1
µ (qe)

� n (I)
� d ln

h
1

µ(qe)

i

d ln I
dq.

Since #e +s� x (s � 1) (#e + 1) > 0 the sign of dn(I)
d ln I is same with the right equations, and

⇣
1

s�1 +
1

1+#e
� x
⌘
>

0 and
d ln
h

1
µ(qe)

i

d ln I > 0, we have:

✓
1

s � 1
+

1
1 + #e

� x

◆ Z

qe

fs(qe, I)
1

µ (qe)

d ln
h

1
µ(qe)

i

d ln I
dqe > 0.



Notice that
d ln
h

1
µ(qe)

i

d ln I =
⇥
1 � s�1

s µ (qe)
⇤ I

I�1 decrease in µ (qe). We now try to prove that:

Z

qe

fs(qe, I)


1
µ (qe)

� n (I)
� d ln

h
1

µ(qe)

i

d ln I
dqe � 0.

To do this, note that by (OA38), we use

Z

qe

fs(qe, I)


1
µ (qe)

� n (I)
�

dqe = 0,

where fs(qe, I)
h

1
µ(qe)

� n (I)
i

is positive if and only if 1
µ(qe)

� n (I) is positive. Set W ⌘
n

qe|µ (qe) < 1
n(I)

o
.

fs(qe, I)
h

1
µ(qe)

� n (I)
i
> 0 if and only if qe 2 W.

Notice that:

Z

qe2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

�
dqe +

Z

qe /2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

�
dqe = 0,

and Z

qe2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

�
dqe > 0

and
d ln
h

1
µ(qe)

i

d ln I < 0. One can see that for any qe 2 W,

d ln
h

1
µ(qe)

i

d ln I
�

d ln
h

1
µ(qe)

i

d ln I
|µ(qe)=n(I)=


1 � s � 1

s
n (I)

�
I

I � 1
.

Therefore, we have:

Z

qe2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

� d ln
h

1
µ(qe)

i

d ln I
dqe (OA39)

�


1 � s � 1
s

n (I)
�

I
I � 1

Z

qe2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

�
dqe.

On the other hand, for any qe /2 W:

d ln
h

1
µ(qe)

i

d ln I



1 � s � 1
s

n (I)
�

I
I � 1

, fs(qe, I)


1
µ (qe)

� n (I)
�
 0.

Therefore, we have:

Z

qe /2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

� d ln
h

1
µ(qe)

i

d ln I
dqe (OA40)

�


1 � s � 1
s

n (I)
�

I
I � 1

Z

qe /2W⇤
fs(qe, I)


1

µ (qe)
� n (I)

�
dqe.



Combination of (OA39) and (OA40) gives:

Z

qe

fs(qe, I)


1
µ (qe)

� n (I)
� d ln

h
1

µ(qe)

i

d ln I
dqe � 0,

which suggests dn(I)
d ln I � 0.⌅

OA.4 Proof of Proposition 2

Proposition 8 •

(i) At the individual level, the labor share nij(qe), the quantity Qij(qe), sales Pij(qe)Qij(qe), entrepreneurial effort
le,ij(qe), worker effort lw(qw), income yw(qw) and utility Vw(qw) decrease; The price Pij(qe) remains unchanged;
The effects on entrepreneur utility Vij,e(qe) and entrepreneur profits ye,ij(qe) are ambiguous;

(ii) At the aggregate level, the wage rate W, the aggregate labor share n and output Q decrease. The effects on
aggregate entrepreneur profits is ambiguous.

(iii) Individual and aggregate entrepreneur profits increase if and only if µ  x
#e

1+#e +
#w

#w+1 x , and individual and aggre-

gate entrepreneur utility increase if and only if µ  x+ #e
1+#e

#e
1+#e +

#w
1+#w x .

The proof for part one and two are below. Remember that markups are constant. Equation (OA15) and

(OA16) give:

W
x

=


(A1)

#e+1
(s�1)[1�x(#e+1)]

A2

A3

� 1�x(#e+1)
#w [1�x(#e+1)]+1

µ
✓

1
µ

◆ (#e+1)
#w [1�x(#e+1)]+1

and

Q µ
✓

1
µ

◆� x(#e+1)
#w [1�x(#e+1)]+1

(#e+1)
1�x(#e+1)

µ

✓
1
µ

◆ (#e+1)
1�x(#e+1)

=

✓
1
µ

◆ (#w+1)#e+#wx(#e+1)
#w [1�x(#e+1)]+1

.

Substituting W and Q in (OA6) with the above equations, we have

Lw(qe) µ


1
µ

� (s�1)(#e+1)
#e+s�x(s�1)(#e+1)


1
µ

� #w(#e+1)�s+1
#w [1�x(#e+1)]+1

#e+1
#e+s�x(s�1)(#e+1)

=


1
µ

� (#e+1)#w
#w [1�x(#e+1)]+1

, 8qe 2 Qe.



Similarly, we have:

S(qe) µ


1
µ

� #e(#w+1)+#wx(#e+1)
#w [1�x(#e+1)]+1

,

le(qe) µ


1
µ

� (#w+1)#e
#w [1�x(#e+1)]+1

,

Qij(qe) µ


1
µ

� (#e+1)#wx+(#w+1)#e
#w [1�x(#e+1)]+1

,

P(qe) µ


1
µ

�0
,

lw (qw) µ
✓

1
µ

◆ #w(#e+1)
#w [1�x(#e+1)]+1

,

cw(qw) µ
✓

1
µ

◆ (#w+1)(#e+1)
#w [1�x(#e+1)]+1

,

Vw(qw) µ
✓

1
µ

◆ (#w+1)(#e+1)
#w [1�x(#e+1)]+1

, 8qw 2 Qw.

It’s easy to see that under the conditions (25) and (24), Lw(qe), S(qe), le(qe), Qij(qe), and P(qe) go down

with the decrease of I. Since the markup is uniform, firm-level labor shares must go down too.

We now prove the part three. By (OA34) and (??) we have:

ce(qe) µ [µ � x]


1
µ

� (#w+1)(#e+1)
#w [1�x(#e+1)]+1

,

Ve(qe) µ


µ � x � #e

1 + #e

� 
1
µ

� (#w+1)(#e+1)
#w [1�x(#e+1)]+1

, 8qe 2 Qe.

Notice that
d ln c(qe)

d ln µ
� 0 , µ � x

µ
 #w + 1 � #wx (#e + 1)

(#w + 1) (#e + 1)
.

One can see that the condition for d ln cij(qe)
d ln µ � 0 is

µ  x
#e

1+#e
+ #w

#w+1 x

On the other hand,
dVe(qe)
d ln µ

µ


x +
#e

1 + #e

�
�


#w

1 + #w
x +

#e

1 + #e

�
µ.

Therefore, µ  x+ #e
1+#e

#e
1+#e +

#w
1+#w x is a condition for dVe(qe)

d ln µ � 0.⌅



OB Supplements to Solution

OB.1 Validity of FOA

The solution to the relaxed planner’s problem might not be a solution to the original planner’s problem,

because the first-order conditions are only necessary conditions. In a perfectly competitive economy, the

validity of the FOA is guaranteed by the standard Spence-Mirrlees condition on preference and a mono-

tonicity condition on the allocation. However, under the Cournot competition, the conditions are more

involved. Lemma 2 provides an insight for when the first-order approach is valid. For the quantitative

analysis in Section 7, we verify incentive compatibility as well as any omitted non-negativity constraints

numerically.

Lemma 2 Under Assumption 1, the first-order incentive condition ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0 is not only a necessary but also

a sufficient condition for the agent’s problem if for any (qe, q0e) 2 Q2, 1+#e
#e

∂ ln le(q0e|qe)
∂qe

∂ ln le(q0e|qe)
∂q0e

+ ∂2 ln le(q0e|qe)
∂q0e∂qe

< 0.

Proof. See Online Appendix OB.2.

Notice that 1+#e
#e

> 0, a stronger condition for the validity of the first-order approach is ∂ ln le(q0e|qe)
∂qe

< 0,
∂ ln le(q0e|qe)

∂q0e
> 0 and ∂2 ln le(q0e|qe)

∂qe∂q0e
 0. ∂ ln le(q0e|qe)

∂qe
< 0 means the higher the ability of the entrepreneur, the lower

the effort needed to finish the task. ∂ ln le(q0e|qe)
∂q0e

> 0 means the higher the reported type, the more effort needed

to finish the task. Last, ∂2 ln le(q0e|qe)
∂q0e∂qe

 0 means ∂ ln le(q0e|qe)
∂q0e

non-increase in qe. All of the above conditions hold

in the monopoly competitive case with X0
e (·) > 0. Incentive compatibility in more general case needs to be

discussed with specific examples.

Here we establish implementability of the constrainted optimal allocation.52,53

Lemma 3 Suppose that the FOCs of the agents and the final good producers are both necessary and sufficient. Sym-
metric Cournot competitive tax equilibrium {A, T ,P} satisfies the following conditions jointly:

(i) Incentive conditions (26) and (29) are satisfied;

(ii) Prices and wage satisfy (15) and (16);

(iii) Market clearing conditions (12) to (14) are satisfied.

Conversely, suppose the allocation A and price P satisfy the above parts (i) to (iii). Then there exists a tax system
T with ts = 0 such that the allocation A can be implemented at the prices P by the tax system T .

Proof. See Online Appendix OB.3.

52To see why the sales tax is redundant, suppose that {Tw (y) , Te (p) , ts} is the optimal tax that implements the second-best
allocation and that there exists another optimal tax system

�
T#

w (y) , T#
e (p) , t#

s
 

that can implement the second-best allocation with
t#
s = 0. Then the tax system can be constructed such that 1 � T#

o (x) = [1 � T0
o (x)] (1 � ts) , x 2 R+.

53In our model, we allow profit and labor income tax to be different, which governs the wage rate, so that there is no need
to use the sales tax to manipulate W to achieve indirect redistribution between the entrepreneur and worker. The sales tax is not
redundant if income taxes on labor income and profit are restricted to be uniform (see e.g., Scheuer (2014)).



OB.2 Proof of Lemma 2

(i) We first show that there is a unique solution to problem (28). Remember that we have set Qij (q0e|qe) =

Qij (xe (qe) le (q0e|qe) , Lw (q0e|qe)) and Pij (q0e|qe) = Pij
�
Qij (q0e|qe) , Q�ij (qe) , qe

�
. The first-order condition of

problem (28),
∂
⇥
Pij (q0e|qe) Qij (q0e|qe) (1 � ts)� WLw (q0e|qe)

⇤

∂Lw (q0e|qe)
= 0, (OB2)

is equivalent to 
1 +

∂ ln Pij (q0e|qe)

∂ ln Qij (q0e|qe)

� Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
x (1 � ts)� W = 0.

The second-order condition of problem (28),

0 >
∂
h
1 + ∂ ln Pij(q0e|qe)

∂ ln Qij(q0e|qe)

i

∂Lw (q0e|qe)

Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
x (1 � ts)�


1 +

∂ ln Pij (q0e|qe)

∂ ln Qij (q0e|qe)

� Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
2 x (1 � ts) +


1 +

∂ ln Pij (q0e|qe)

∂ ln Qij (q0e|qe)

�
1

Lw (q0e|qe)

∂
⇥
Pij (q0e|qe) Qij (q0e|qe)

⇤

∂Lw (q0e|qe)
x (1 � ts) ,

holds because
∂
h
1 + ∂ ln Pij(q0e|qe)

∂ ln Qij(q0e|qe)

i

∂Lw (q0e|qe)

Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
x (1 � ts) < 0

and

1
Lw (q0e|qe)

∂
⇥
Pij (q0e|qe) Qij (q0e|qe)

⇤

∂Lw (q0e|qe)
�

Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
2

=
Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
2

"
∂ ln

⇥
Pij (q0e|qe) Qij (q0e|qe)

⇤

∂ ln Lw (q0e|qe)
� 1

#

=
Pij (q0e|qe) Qij (q0e|qe)

Lw (q0e|qe)
2

"
∂ ln

⇥
Pij (q0e|qe) Qij (q0e|qe)

⇤

∂ ln Qij (q0e|qe)
x � 1

#
< 0

hold for any Lw (q0e|qe) and le (q0e|qe). Therefore, there must be a unique solution to the problem (28).

(ii) According to the definition of Ve(q0e|qe), we have

∂Ve(q0e|qe)
∂q0e

= c0e
�
q0e
�
� f0

e
�
le
�
q0e|qe

�� ∂le (q0e|qe)
∂q0e

. (OB3)

The first-order necessary condition ∂Ve(q0e|qe)
∂q0e

|q0e=qe = 0 implies limqe!q0e
∂Ve(q0e|qe)

∂q0e
= 0, i.e.,

0 =


c0e
�
q0e
�
� f0

e
�
le
�
q0e|qe

�� ∂le (q0e|qe)
∂q0e

�
|qe=q0e , (OB4)



Adding (OB3) into (OB4), we have

∂Ve(q0e|qe)
∂q0e

=


f0

e
�
le
�
q0e|qe

�� ∂le (q0e|qe)
∂q0e

�
|qe=q0e � f0

e
�
le
�
q0e|qe

�� ∂le (q0e|qe)
∂q0e

Using the mean value theorem, the sign of the right-hand side is given by

d
h
f0

e (le (q0e|q⇤e ))
∂le(q0e|q⇤e )

∂q0e

i

dq⇤
�
q0e � qe

�

for some q⇤e that lies between q0e and qe. If one has
d


f0
e(le(q0e|q⇤e ))

∂le(q0e |q⇤e )
∂q0e

�

dq⇤ < 0 for any (q⇤e , q0e) 2 Q2, the function

Ve(q0e|qe) will increase with q0e until q0e = qe and then decreases with q0e. In conclusion, there is a unique the

local maximum point that is also the global maximizer of Ve(q0e|qe). Then under Assumption 1, the first-order

incentive condition is not only necessary but also sufficient for the agent’s problem.

Notice that

∂2 ln le (q0e|q⇤e )
∂q⇤e ∂q0e

=
1

le (q0e|q⇤e )
∂2le (q0e|q⇤e )

∂q0e∂q⇤e
� 1

le (q0e|q⇤e )
2

∂le (q0e|q⇤e )
∂q⇤e

∂le (q0e|q⇤e )
∂q0e

and

d
h
f0

e (le (q0e|q⇤e ))
∂le(q0e|q⇤e )

∂q0e

i

dq⇤
= f00

e
�
le
�
q0e|q⇤e

�� ∂le (q0e|q⇤e )
∂q⇤e

∂le (q0e|q⇤e )
∂q0e

+ f0
e
�
le
�
q0e|q⇤e

�� ∂2le (q0e|q⇤e )
∂q⇤e ∂q0e

= f0
e
�
le
�
q0e|q⇤e

��
le
�
q0e|q⇤e

�
2

4
f00

e (le(q0e|q⇤e ))le(q0e|q⇤e )
f0

e(le(q0e|q⇤e ))
∂ ln le(q0e|q⇤e )

∂q⇤e

∂ ln le(q0e|q⇤e )
∂q0e

+ 1
le(q0e|q⇤e )

∂2le(q0e|q⇤e )
∂q⇤e ∂q0e

3

5 .

We have

d
h
f0

e (le (q0e|q⇤e ))
∂le(q0e|q⇤e )

∂q0e

i

dq⇤
= f0

e
�
le
�
q0e|q⇤e

��
le
�
q0e|q⇤e

�
2

4

h
f00

e (le(q0e|q⇤e ))le(q0e|q⇤e )
f0

e(le(q0e|q⇤e ))
+ 1
i

∂ ln le(q0e|q⇤e )
∂q⇤e

∂ ln le(q0e|q⇤e )
∂q0e

+ ∂2 ln le(q0e|q⇤e )
∂q⇤e ∂q0e

3

5 .

It can be seen that
d


f0
e(le(q0e|q⇤e ))

∂le(q0e |q⇤e )
∂q0e

�

dq⇤ < 0 just means that the second-order necessary condition is satis-

fied. To see this, notice that the first-order necessary condition implies
h

∂2Ve(q0e|qe)

∂(q0e)
2 dq0e +

∂2Ve(q0e|qe)
∂q0e∂qe

dqe

i
||q0e=qe

=

0. The second-order necessary condition ∂2Ve(q0e|qe)

∂(q0e)
2  0 is equivalent to ∂2Ve(q0e|qe)

∂q0e∂qe
� 0 under the first-order

necessary condition, i.e.,

�


f00
e (le (q0e|qe)) le (q0e|qe)

f0
e (le (q0e|qe))

1
le (q0e|qe)

∂le (q0e|qe)
∂qe

∂le (q0e|qe)
∂q0e

+
∂2le (q0e|qe)

∂q0e∂qe

�
f0

e
�
le
�
q0e|qe

��
� 0.

Notice that ∂2le(q0e|qe)
∂qe∂q0e

= ∂2 ln le(q0e|qe)
∂qe∂q0e

le (q0e|qe) +
∂le(q0e|qe)

∂qe

∂le(q0e|qe)
∂q0e

1
le(q0e|qe)

. The above inequality is equivalent to

�
✓

1 +
1
#e

◆
∂ ln le (q0e|qe)

∂qe

∂ ln le (q0e|qe)
∂q0e

+
∂2 ln le (q0e|qe)

∂qe∂q0e

�
le
�
q0e|qe

�
f0

e
�
le
�
q0e|qe

��
� 0.



Now that

sign

0

@
d
h
f0

e (le (q0e|q⇤e ))
∂le(q0e|q⇤e )

∂q0e

i

dq⇤

1

A = sign

0

@

⇣
1 + 1

#e

⌘
∂ ln le(q0e|q⇤e )

∂q⇤e

∂ ln le(q0e|q⇤e )
∂q0e

+ ∂2 ln le(q0e|q⇤e )
∂q⇤e ∂q0e

1

A ,

one can see that
⇣

1 + 1
#e

⌘
∂ ln le(q0e|q⇤e )

∂q⇤e

∂ ln le(q0e|q⇤e )
∂q0e

+ ∂2 ln le(q0e|q⇤e )
∂q⇤e ∂q0e

< 0 for any (q⇤e , q0e) 2 Q2 is a sufficient condition

for the validity of FOA.⌅

OB.3 Proof of Lemma 3

We first show that a symmetric Cournot competitive tax equilibrium must satisfy parts 1 to 3. First, by the

definition of SCCTE, (15) to (16) and (12) to (14) must be satisfied. Second, by the definition of SCCTE, agents

maximize their utilities, which, by envelop theory, means (26) and (29) must be satisfied (see e.g., Lemma 1).

Next, suppose that we are given an allocation A and price P to satisfy the properties in parts 1 to 3.

We now construct the tax system T (with ts = 0), which together with the given allocation A and price P
constructs a SCCTE. We first construct a policy system with the given allocation A and price P . We then

show that this constructed policy system together with A and P constructs a SCCTE.

First, we construct the policy system. By the definition of tax wedges and ts = 0, the marginal tax rates

are constructed as follows:

T0
w (yw (qw)) = 1 � f0

w (lw (qw))
P(qe)
µ(qe)

∂Qij(qe)
∂Lw(qe)

xw (qw)

and

T0
e (ye (qe)) = 1 � f0

e (le (qe))
P(qe)
µ(qe)

∂Qij(qe)
∂le(qe)

.

We use agents’ budget constraints to fix the labor income taxes. We first construct Tw (·). To do this, we

substitute

Tw (yw(qw)) = Tw (yw(qw)) +
Z yw(qw)

yw(qw)
T0

w (yw) dy

into

yw(qw)� Tw (yw(qw))� cw(qw) = 0.

We now show that the constructed labor income tax is consistent with the agent’s problems. By construc-

tion, we have shown that the constructed Tw (·) is consistent with the qw-type agent’s action. We should

show the constructed labor income tax is also consistent with other agents’ choices. In particular, since by

construction the first-order conditions are already satisfied, we should show that the budget constraints are

also satisfied. This is equivalent to say that for any qw 2 Qw,

y0w(qw)
⇥
1 � T0

w (yw(qw))
⇤
� c0w(qw) = 0.



Substituting 1 � T0
w (yw(qw)) with the FOC (17), the above equation is equivalent to

c0w(qw)�
f0

w (lw(qw))
Wxw (qw)

y0w(qw) = 0.

The above equations holds because for any qw 2 Qw the allocation satisfies:

V 0
w(qw) =

f0
w (lw(qw)) lw(qw)x0w (qw)

xw (qw)
(OB5)

= c0w(qw)�
y0w(qw)

Wxw (qw)
f0

w (lw(qw)) +
f0

w (lw(qw)) lw(qw)x0w (qw)
xw (qw)

.

The first equation of (OB5) is the incentive condition, and the second equation is derived through the def-

inition of Vw(qw). In conclusion, given the allocation, we can construct a unique labor income tax that is

consistent with the allocation in the equilibrium.

The construction of Te (·) is similar to the construction of Tw (·). Note that Tw (yw(qw)) can be different

from Te (ye(qe)). We substitute

Te (ye(qe)) = Te (ye(qe)) +
Z ye(qe)

ye(qe)
T0

e (ye) dp

into

ye(qe)� Te (ye(qe))� ce(qe) = 0

and show that there exists Te (·) such that given allocation A, price P and the constructed marginal profit

income tax rates, the above equation is satisfied for any qe 2 Qe. To be consistent with the qe-type agent’s

budget constraint, Te (ye(qe)) must satisfy

ye(qe)� Te (ye(qe))� ce(qe) = 0.

We should show this constructed profit tax on ye(qe), i.e., Te (ye(qe)), is also consistent with other agents’

budget constraints. This is equivalent to say that

ye(qe)
⇥
1 � T0

e (ye(qe))
⇤
� c0e(qe) = 0.

Substituting 1 � T0
e (ye(qe)) with the FOC (18), the above equation is equivalent to

c0e(qe)�
f0

e (le (qe))
P(qe)
µ(qe)

∂Qij(qe)
∂le(qe)

ye(qe) = 0,

which is further equivalent to

c0e(qe)� µ (qe)
f0

e (le (qe)) le (qe)
P (qe) Qij (qe)

ye(qe) = 0. (OB6)



The above equations are true since we have

V 0
e (qe) = f0

e (le (qe)) le (qe)

"
µ (qe)

d ln Pij
�
Qij, Qij (qe) , qe

�

dqe
|Qij=Qij(qe) +

z 0e (qe)
ze (qe)

#
(OB7)

= c0e(qe)� f0
e (le (qe)) le (qe)

l0e (qe)
le (qe)

,

and

ye(qe) = Qij(qe)P (qe)

2

64

d ln Pij(Qij,Qij(qe),qe)
dqe

|Qij=Qij(qe)+
1 +

∂ ln Pij(Qij(qe),Q�ij,qe)
∂ ln Qij(qe)

|Q�ij=Qij(qe)

� h
x0e(qe)
xe(qe)

+ l0e(qe)
le(qe)

i

3

75 . (OB8)

Substituting l0e(qe)
le(qe)

in (OB7) by (OB8) and using 1 +
∂ ln Pij(Qij(qe),Q�ij,qe)

∂ ln Qij(qe)
|Q�ij=Qij(qe) = 1

µ(qe)
delivers (OB6)

immediately. The first equation of (OB7) is the incentive condition, and the second equation is derived

through the definition of Ve(qe). (OB8) is derived from the definition of ye(qe) (i.e., ye(qe) = P(qe)Qij(qe)�
WLw(qe)) and the fact that the derivative of ye(qe) with respect to Lw(qe) is zero.

In conclusion, given the allocation, we can construct a unique combination of labor income tax and profit

tax that is consistent with the allocation in the equilibrium.

We now show that the allocation A and price P satisfying parts 1 to 3 and the constructed tax system T
construct an SCCTE. First, the constructed allocation and taxation satisfy the first-order conditions. Since we

have assumed that the first-order conditions are both necessary and sufficient, the allocation solves agents’

problems. Second, the price P satisfies (15) and (16). Third, the market clear conditions (12) to (14) are

satisfied. Lastly, agents’ budget constraints (8) and (11) are embedded in the definitions of gross utilities

and the construction of income taxes. In conclusion, the constructed tax system T together with the given

allocation A and price P constructs an SCCTE.⌅



OC Supplements to Main Results

OC.1 An Explicit Formula of Tax Rate

Theorem 1 fully describes the optimal tax wedges, but the tax rate for the entrepreneurs te(qe) cannot be

written explicitly because the weights w(qe) in equation (39) and hence the average markup µ is a function

of the tax rate te(qe). In what follows, we can write the tax rate explicitly under a particular parameter

configuration. Than we can solve explicitly for the weights w(qe) and therefore we can write the average

markup µ explicitly in the following Corollary:

Corollary 2 When 1+#e
#e

�
s

s�1 � x
�
= 2, we have

µ =

�
s

s�1 + x
� R

qe
g(qe)µ (qe) dqe

2x
�

p
D

2x
,

where

g(qe) =
g(qe)R

qe
g(qe)dqe

,

g(qe) =

⇣
Xe(qe)
µ(qe)

⌘ 1+#e
#e

s
s�1 fe (qe)

1 + [1 � ḡe(qe)] H(qe)
h

1
#e

µ (qe)� 1+#e
#e

x + 1
s�1

i
+
⇥
µ (qe)� s

s�1
⇤
[1 � ge(qe)]

,

D =

✓
s

s � 1
� x

◆2 Z

qe

g(qe)µ (qe) dqe

�2
� 4

s

s � 1
x

"Z

qe

µ (qe)
2 g(qe)dqe �

✓Z

qe

g(qe)µ (qe) dqe

◆2
#

.

Proof. See Online Appendix OC.2.

Corollary 2 provides a special case where we can provide explicit optimal tax formulas with given social

welfare weights. Note that 1+#e
#e

�
s

s�1 � x
�
= 2 is consistent with condition (24). Corollary 2 thus suggests

that under some reasonable parameter values, there is a unique and well-defined solution to the equation

system (36) and (39).

OC.2 Proof of Corollary 2

Substituting elasticities, RE (qe) and IRE (qe) in (36) by (37) and (38), we have:

1 � te (qe) =

s
s�1
s

s�1�x �
x

s
s�1�x

µ
µ(qe)

1+[1�ḡe(qe)]H(qe)[ 1
#e µ(qe)� 1+#e

#e x+ 1
s�1 ]+[µ(qe)� s

s�1 ][1�ge(qe)]

µ(qe)

Notice that 1 < s < h(qe), s
s�1 � µ (qe) = 1

1�
h

1
h(qe)

I�1
I + 1

s
1
I

i > 1, 0  x < 1. We have

1 � x
s

s�1 � x
RE (qe) =

1
s

s�1 � x


s

s � 1
µ (qe)

µ
� x

�
> 0.



Then, we have

1 + [1 � ḡe(qe)] H(qe)


1
#e

µ (qe)�
1 + #e

#e
x +

1
s � 1

�
+


µ (qe)�

s

s � 1

�
[1 � ge(qe)] � 0,

since 1 � te (qe) � 0. According to the above inequality, we have g(qe) � 0 and g(qe) � 0. When

1+#e
#e

�
s

s�1 � x
�
= 2, we have

µ =

R
qe

µ (qe) [1 � te (qe)]
⇣

Xe(qe)
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s
s�1 µ (qe)� xµ
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dqeR

qe
g(qe)

⇥
s

s�1 µ (qe)� xµ
⇤

dqe
,

where the second equation is derived by the relationship between g(qe) and [1 � te (qe)]. Accordingly, we

have

s

s � 1
µ
Z

qe

g(qe)µ (qe) dqe � xµ2
Z

qe

g(qe)dqe

=
s

s � 1

Z
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µ (qe)
2 g(qe)dqe � xµ

Z

qe

µ (qe) g(qe)dqe,

or equivalently

0 = xµ2 �
✓

s

s � 1
+ x

◆ Z

qe

g(qe)µ (qe) dqe

�
µ +

s

s � 1

Z

qe

µ (qe)
2 g(qe)dqe, (OC2)

which is a quadratic equation of µ.

We define

D =

✓
s

s � 1
� x

◆2 Z

qe

g(qe)µ (qe) dqe

�2
� 4

s

s � 1
x

"Z

qe

µ2 (qe) g(qe)dqe �
✓Z

qe

g(qe)µ (qe) dqe

◆2
#

as the discriminant of (OC2). Set

Eg (µ) =
Z

qe

g(qe)µ (qe) dqe, Varg (µ) =

"Z

qe

µ2 (qe) g(qe)dqe �
✓Z

qe

g(qe)µ (qe) dqe

◆2
#

and

µ⇤ (qe) = (s � 1) [µ (qe)� 1] .



We have µ⇤ (qe) 2 (0, 1], because µ (qe) 2 (1, s
s�1 ]. Set

Eg (µ
⇤) =

Z

qe

g(qe)µ
⇤ (qe) dqe, Eg

�
µ⇤2� =

Z

qe
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2 dqe,

Varg (µ
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"Z

qe

µ⇤ (qe)
2 g(qe)dqe �

✓Z

qe

g(qe)µ
⇤ (qe) dqe
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#

.

Then, we have

D =

✓
s
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� x

◆2 
1 +

1
s � 1

Eg (µ
⇤)

�2
� 4

s

s � 1
x

(s � 1)2 Varg (µ) .

One necessary condition for the exist of solution to (OC2) is D � 0. Notice that Eg
�
µ⇤2�  Eg (µ⇤). We

have

D =

✓
s

s � 1
� x
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2
s � 1

✓
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� x

◆2
Eg (µ
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�
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s�1 + x
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(s � 1)2 [Eg (µ
⇤)]2 (OC3)

� 2
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◆2 2x
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�
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� DH (Eg (µ
⇤)) ,

where we set

DH (Eg (µ
⇤)) =

✓
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�
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#

Eg (µ
⇤)

as a quadratic function of Eg (µ⇤).

The minimium value of DH is derived at µ⇤ ⌘
(s�1)

h
2s�1

s2 x2�(1�x)2
i

(1+ s�1
s x)

2 < 1. However, Eg (µ⇤) 2 (0, 1], and

thus µ⇤ may not belong to the domain of Eg (µ⇤).

If µ⇤  0, to prove that D � 0, we only need to prove that DH � 0 when Eg (µ⇤) = 1 and Eg (µ⇤) = 0.

This is true. According to (OC3), when Eg (µ⇤) = 1, we have
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✓
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When Eg (µ⇤) = 0, we have

DH =

✓
s

s � 1
� x

◆2
> 0.



If µ⇤ > 0 (note that µ⇤ must be lower than one), to prove D � 0, we only need to prove that DH (µ⇤) � 0.

To see this, first note that when µ⇤ 2 (0, 1), we have

2s � 1
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✓
1
x
� 1
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We set

eD =

(
2
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� 4
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as the discriminant of DH (Eg (µ⇤)) > 0. eD < 0 is a sufficient condition for D > 0. To prove eD < 0, we only

need to show that

1
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which is equivalent to

2
✓

s

s � 1

◆2

(1 � x) > 0.

Notice that the above inequality must hold. Thus, we must have D > 0. In conclusion, there are two

solutions to the quadratic equation (OC2). However, D > 0 does not necessarily mean that the solutions are

all in the domain of µ (i.e., (1, s
s�1 ]).

In the following analysis, we prove that there exists unique solution in the domain of µ. The two potential

solutions are µ1 and µ2:
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�
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� R

qe
g(qe)µ (qe) dqe

2x
�

p
D

2x
�
Z

qe

g(qe)µ (qe) dqe,

µ2 =

�
s

s�1 + x
� R

qe
g(qe)µ (qe) dqe

2x
+

p
D

2x
 s

s � 1
1
x

Z

qe

g(qe)µ (qe) dqe.

In the following analysis, we prove that µ2 > s
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s�1 ]. To prove this, we only need to show
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In particular, µ2 > s
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Substituting µ (qe) in the above inequality by µ (qe) = 1 + 1
s�1 µ⇤ (qe), we have

p
D > 2x

s

s � 1
�
✓

s

s � 1
+ x

◆ 
1 +

1
s � 1

Eg (µ
⇤)

�

=

✓
s + 1
s � 1

x � s

s � 1

◆
�
✓

s

s � 1
+ x

◆
1

s � 1
Eg (µ

⇤) .

When x  s
s+1 , the above inequality must holds. When x > s

s+1 , to prove the above inequality, we only
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Rearranging the right side the the above equation, we have
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we have
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(see e.g., (OC3)) we have
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⌅

OC.3 Statistic-based Optimal Tax Formulas

In the following Theorem OC1, we provide optimal tax rules in terms of social welfare weights and a small

number of empirical observable statistics (see Appendix A.2 for the definitions of elasticities).

Theorem OC1 Suppose the cross wage elasticities #v
Lw
(q0e, qe) and #v

le (q
0
e, qe) are independent q0e for any (q0e, qe) 2 Q2

e ;
the markup µ (qe) is exogenous in the equilibrium; and the firm-level production technology is in the form of (1). The
optimal tax wedges satisfy the following statistic-based tax formula for any qw 2 Qw and qe 2 Qe:

1
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=
1 + [1 � ḡw(qw)]
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1
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µ
. (OC4)

and

1
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(OC5)

⇥ 1

1 +
h

µ
µ(qe)

� 1
i

x
#v

le (qe)

#v
Lw (qe)

.

Proof. See Online Appendix OC.4.

Equations (OC4) and (OC5) are statistic-based formulas in the the sense that the statistics on the right

side can be observed at each income or profit level. Theorem OC1 shows in addition to the social welfare



weights, income distributions, and elasticities of income, the statistic-based optimal tax formulas are related

to the markups. When the market is competitive, such that µ (qe) = µ = 1 and #P,cross
Q�ij

(qe) = 0, (OC5) is

reduced to the traditional optimal statistic-based tax formula:

1
1 � te (qe)

= 1 + [1 � ḡe(qe)]
1 � Fye(ye (qe))

ye (qe) fye (ye (qe))
1

e#ye
1�te

(qe)

However, in general cases, the statistic-based optimal profit tax in an economy with market power is differ-

ent from the traditional one (see e.g., Piketty (1997); Diamond (1998); Saez (2001)). Moreover, the statistic-

based optimal profit tax formula is quite different from the statistic-based optimal income tax formular,

unless the economy is competitive or monopoly competitive.

OC.4 Proof of Theorem OC1

Notice that (OA26) and d ln[1�te(qe)]
dqe

d ln ye(qe)
dqe

= � T00
e (ye(qe))ye(qe)
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, we have:
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Therefore, (36) is equivalent to:
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where we use #
Qij
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(qe) = x. Notice that
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Last, (OC4) is equivalent to (35) bcause by the definition of #
yw
1�tw

(qe), one has 1�Fyw (yw(qw))
yw(qw) fyw (yw(qw))

1
#

yw
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=



1�Fw(qw)
fw(qw)

x0w(qw)
xw(qw)

1+#w
#w

.⌅

OC.5 Proof of Theorem 2

OC.5.1 Non-linear Sales Taxes

Before prove Theorem 2, we should present the second best problem formally. In our benchmark model, we

consider an environment with uniform linear sales tax, which restricts ts (qe) to be constant. In this section,

we remove this policy constraint and allow for non-linear sales tax as considered by Ales et al. (2017). To do

this, we allow the planner to contract with entrepreneurs on sales income S(qe) ⌘ P (qe) Qij (qe) in addition

to ye(qe). An entrepreneur reporting q0e should obtain ye(q0e) in profit, S(q0e) in sales income, and receive

ce(q0e) in after-tax profit. Thus, a qe-type entrepreneur reporting q0e should choose Lw and le to satisfy the

following two promise-keeping constraints:

Pij
�
Qij, Q�ij (qe) , qe

�
Qij = S

�
q0e
�

and Pij
�
Qij, Q�ij (qe) , qe

�
Qij � WLw = ye

�
q0e
�

.

The two promise-keeping constraints determine the combination of Lw and le that are needed to complete

the tasks of sales income and profit. Denote Lw (q0e|qe) and le (q0e|qe) as the labor input and effort needed to

complete the tasks, respectively. Denote Qij (xe (qe) le, Lw) as the firm-level production function. Combining

these two constraints we immediately have

Lw
�
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�
=
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W

,
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P
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✓
xe (qe) le

�
q0e|qe

�
,

S (q0e)� ye (q0e)
W

◆
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�
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W

◆
= S

�
q0e
�

.

Two things worth noting here. First, by enforcing tasks of sales income and profit, the planner can

directly control the amount of labor inputs. That is to say, Lw (q0e|qe) is independent of qe. Second, notice

that
∂[P(Qij,Q�ij(qe),qe)Qij]

∂Qij
= P

�
Qij, Q�ij (qe) , qe

� h
1 + #P,own
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i
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(qe) > �1. As long as Qij strictly

increases in le (q0e|qe) with P
�
Qij (0, ·) , Q�ij (qe) , qe

�
Qij (0, ·) = 0, there exists a unique solution le (q0e|qe) for

any S (q0e) � 0.

Therefore, under our setup, we can reformulate the entrepreneur’s problem as:

Ve (qe) ⌘ max
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�
q0e
�
� fe

�
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�
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��
. (OC6)

Solving the above problem, as in the benchmark model, we have
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and
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which is equivalent to the benchmark incentive-compatible constraint (29), because in the benchmark model

µ (q) = 1
1+#P,own

Qij
(qe)

, Qij(qe)
∂Qij(qe)
∂le(qe)

= le (qe) and ∂ ln Qij(qe)
∂xe(qe)

x0e (qe) =
x0e(qe)
xe(qe)

.

The worker’s problem remains the same as before. Therefore, all incentive-compatible allocations satis-

fying (26), (29) and the resource constraints are feasible. The planner’s problem is similar to the one in the

benchmark model, except that the policy constraint d ln v(qe)
dqe

= 0 is now relaxed.

OC.5.2 Lagrangian Problem

We prove Theorem 2 following the Lagrangian problem presented in Appendix B.2.1. Note that the expres-

sion of markup (19) is now generalized to be µ(qe) =
P(qe)

∂Qij(qe)
∂Lw(qe)

[1�ts(qe)]

W . By the definition of v (qe) (see e.g.,

(30)), we have v (qe) = P (qe)
h
1 + #P,own

Qij
(qe)

i
∂Qij(qe)
∂Lw(qe)

. Notice that 1 � ts (qe) = W
v(qe)

, as in the benchmark

model, we have µ (qe) = 1
1+#P,own

Qij
(qe)

.

(i) When the uniform restriction on v (qe, qele (qe) , Lw (qe) , Q) is loosened and j (qe) = 0. In this case,

according to the expression of ∂£
∂Lw(qe)

(e.g., (A36)), we have

P (qe)
∂Qij (qe)

∂Lw(qe)
=

l0

l
� k0 (qe)

lLw (qe) Ne fe (qe)

∂ ln Qij (qe)

∂ ln Lw(qe)
(OC9)

=
l0

l
� k0 (qe) x

lLw (qe) Ne fe (qe)
.

Dividing both sides by #v
Lw (qe)

Lw(qe)N fe(qe)
and integrating across qe gives

Z

qe

P (qe) Qij (qe) x
Ne fe (qe)
#v

Lw
(qe)

dqe =
l0

l

Z

qe

Lw (qe) Ne fe (qe)
#v

Lw
(qe)

dqe �
Z

qe

k0 (qe)
l#v

Lw
(qe)

xdqe,

Using k(qe) = k(qe) = 0 and integration by parts, we have

l0

lW
=

x
R

qe
P (qe) Qij (qe) Ne fe (qe) dqe

W
R

qe
Lw (qe) Ne fe (qe) dqe

(OC10)

=
x
R

qe

P(qe)Qij(qe)
WLw(qe)

WLw (qe) Ne fe (qe) dqeR
qe

WLw (qe) Ne fe (qe) dqe

=
x
R

qe

µ(qe)
x[1�tE

s (qe)]
WLw (qe) N fe (qe) dqe

R
qe

WLw (qe) Ne fe (qe) dqe

= µ⇤.

where the third equation is derived from the generalized definition of markup (i.e., µ(qe) =
P(qe)

∂Qij(qe)
∂Lw(qe)

[1�ts(qe)]

W ).



By the definition of tax wedges (see e.g., (31)), we can substitute P (qe)
∂Qij(qe)
∂Lw(qe)

in (OC9) with Wµ(qe)
1�tE

s (qe)
:

1
1 � tE

s (qe)
=

l0

lWµ (qe)
� k0 (qe) x

lLw (qe) Ne fe (qe)Wµ (qe)
(OC11)

=
µ⇤

µ (qe)
� k0 (qe) x

lLw (qe) Ne fe (qe)Wµ (qe)

=
µ⇤

µ (qe)
+

P (qe) Qij (qe)
⇥
1 � tE

s (qe)
⇤

x
⇥
1 � tE

e (qe)
⇤

#P,cross
Q�ij

(qe)

2

64
ye (qe)

1+#e
#e

l0e(qe)
le(qe)

+ y0
e (qe)

+ye (qe)
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75

Lw (qe)Wµ (qe) lNe fe (qe)

=
µ⇤

µ (qe)
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe)

2

664

[1 � ge(qe)]�

[1�ḡe(qe)][1�Fe(qe)]
fe(qe)

2

4 1+#e
#e

l0e(qe)
le(qe)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

5

3

775 ,

where the third equation is derived by the modified (A45):

k0 (qe) = �
d
h
ye (qe) f0

e (le (qe)) le (qe) bµ(qe)#
P,cross
Q�ij

(qe)
i

dqe

= �

2

66664

y0
e (qe) f0

e (le (qe)) le (qe) bµ(qe)#
P,cross
Q�ij

(qe) +

ye (qe) f0
e (le (qe))

1+#e
#e

l0e (qe) bµ(qe)#
P,cross
Q�ij

(qe) +

ye (qe) f0
e (le (qe)) le (qe)

d ln

bµ(qe)#

P,cross
Q�ij

(qe)

�

dqe

3

77775

= �f0
e (le (qe)) le (qe) bµ(qe)#

P,cross
Q�ij

(qe)

2

64
ye (qe)

1+#e
#e

l0e(qe)
le(qe)

+

y0
e (qe) + ye (qe)

d ln

bµ(qe)#

P,cross
Q�ij

(qe)

�

dqe

3

75

and the tax wedge, 1 � tE
e (qe) =

f0
e(le(qe))

P(qe)
µ(qe)

∂Qij(qe)
∂le(qe)

[1�tE
s (qe)]

(see e.g., (31)). These two equations implies

k0 (qe) = �P (qe) Qij (qe)
h
1 � tE

e (qe)
i h

1 � tE
s (qe)

i
#P,cross

Q�ij
(qe)

2

64
ye (qe)

1+#e
#e

l0e(qe)
le(qe)

+

y0
e (qe) + ye (qe)

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

75 .

The last equation of (OC11), i.e.,

tE
s (qe)

1 � tE
s (qe)

=

fRE(qe)z }| {
µ⇤

µ (qe)
� 1
�
+
h
1 � tE

e (qe)
i

gIRE(qe)z }| {

#P,cross
Q�ij

(qe)

2

6664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥

2

4 1+#e
#e

l0e(qe)
le(qe)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

5

3

7775
(OC12)

is derived by (A41), (A42) and 1 � tE
s (qe) =

Wµ(qe)

P(qe)
∂Qij(qe)
∂Lw(qe)

= WLw(qe)µ(qe)
xP(qe)Qij(qe)

.



(ii) According to the expression of ∂£
∂lw(qw)

(e.g., (A35)), we have

1
f0

w(lw(qw))
xw(qw)

=
l

l0


1 � x0w (qw)

xw (qw)
yw(qw)

lNw fw (qw)
1 + #w

#w

�
.

Substituting f0
w(lw(qw))
xw(qw)

by
⇥
1 � tE

w (qw)
⇤

W gives:

1
1 � tE

w (qw)
=

1
µ⇤


1 + [1 � ḡw(qw)]

1 � Fw(qw)
fw(qw)

x0w (qw)
xw (qw)

1 + #w

#w

�
. (OC13)

(iii) According to the expression of ∂£
∂le(qe)

(e.g., (A37)), we have:

ete (qe)
1 � ete (qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
1 + #e

#e


µ (qe)

∂ ln P (Q (qe) , qe)
∂qe

+
x0e (qe)
xe (qe)

�

� 1
1 � ete (qe)

WLw (qe)
P (qe) Qij (qe)

1
x

k0 (qe) x

lNe fe (qe)WLw (qe)
.

Reminber that 1 � ete (qe) =
f0

e(le(qe))

P(qe)
∂Qij(qe)
∂le(qe)

=
[1�tE

e (qe)][1�tE
s (qe)]

µ(qe)
.

Using µ(qe)
1�tE

s (qe)
= µ⇤ � k0(qe)x

lWLw(qe)Ne fe(qe)
to substitute k0(qe)x

lWLw(qe)Ne fe(qe)
and

x[1�tE
s (qe)]

µ(qe)
to substitute WLw(qe)

P(qe)Qij(qe)
,

we have:

1
1 � ete (qe)

= 1 + [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
1 + #e

#e


µ (qe)

∂ ln P (Q (qe) , qe)
∂qe

+
x0e (qe)
xe (qe)

�

+
1

1 � ete (qe)


1 � µ⇤ 1 � tE

s (qe)
µ (qe)

�
.

Lastly, substitute 1 � ete (qe) by [1�tE
e (qe)][1�tE

s (qe)]
µ(qe)

and rearrange:

tE
e (qe)

1 � tE
e (qe)

=
1 � µ⇤ + [1 � ḡe(qe)]

1�Fe(qe)
fe(qe)

1+#e
#e

h
µ (qe)

∂ ln P(Q(qe),qe)
∂qe

+ x0e(qe)
xe(qe)

i

µ⇤ . (OC14)

OC.5.3 Part One: An Explicit Expression

According to the definitions of tax wedges, we have

x
⇥
1 � tE

s (qe)
⇤

µ (qe)
P (qe) Q (qe) = WLw (qe) (OC15)

and
P(qe)Qij(qe)

⇥
1 � tE

s (qe)
⇤

µ (qe)

h
1 � tE

e (qe)
i
= le (qe)

1+ 1
#e . (OC16)



Substituting P (qe) and Q (qe) in (OC15) by (A1) and Qij (qe) = xe (qe) le (qe) Lw (qe)
x , we have:

 h
1 � tE

s (qe)
i c (qe) xe (qe)

1� 1
s

µ (qe)

!
x A s�1

s Q 1
s

N
1
s

e W
le (qe)

1� 1
s Lw (qe)

x s�1
s = Lw (qe) ,

Rearrange the above equation:

Lw (qe) =

 
Xe (qe)

⇥
1 � tE

s (qe)
⇤

µ (qe)

! 1
1�x s�1

s

le (qe)
1� 1

s
1�x s�1

s

 
xA s�1

s Q 1
s

WN
1
s

e

! 1
1�x s�1

s

. (OC17)

On the other hand, a combination of the two first-order conditions delivers:

WLw (qe)
x

h
1 � tE

e (qe)
i
= le (qe)

1+ 1
#e .

The above two equations imply:

Lw (qe) =

 
Xe (qe)

⇥
1 � tE

s (qe)
⇤

µ (qe)

! 1
1�x s�1

s


WLw (qe)
x

h
1 � tE

e (qe)
i� 1� 1

s
1�x s�1

s

#e
1+#e

 
x A s�1

s Q 1
s

WN
1
s

e

! 1
1�x s�1

s

i.e,

Lw (qe) =
h
1 � tE

s (qe)
i 1+ s�1

s
#e

1+#e
1� s�1

s ( #e
1+#e

+x)
✓

Xe (qe)
µ (qe)

◆ 1
1� s�1

s ( #e
1+#e

+x)


W
x

� s�1
s

#e
1+#e

1� s�1
s ( #e

1+#e
+x)
 

xA s�1
s Q 1

s

WN
1
s

e

!
1

1�x s�1
s

1� 1� 1
s

1�x s�1
s

#e
1+#e .

(OC18)

Combining the above two equations, we can solve for Lw (qe) and le (qe) and derive:

d ln Lw (qe)
dqe

=

d
dqe


ln

Xe(qe)[1�tE
s (qe)]

µ(qe)

�

1 � x s�1
s

+
s�1

s

1 � x s�1
s

l0e (qe)
le (qe)

(OC19)

and

d ln le (qe)
dqe

=

d
dqe


ln

Xe(qe)[1�tE
s (qe)]

µ(qe)

�
+
⇥
1 � x s�1

s

⇤ d ln[1�tE
e (qe)]

dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘ . (OC20)

Comparing the above two equations to (OA20) and (OA22), one can see that they are the same except



that now Xe (qe) is replaced by Xe (qe)
⇥
1 � tE

s (qe)
⇤
. In addition, we have:

µ (qe)
d ln Pij

�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

= µ (qe)
c0(qe)
c(qe)

+
x0e (qe)
xe (qe)

+ µ (qe) #P,cross
Q�ij

(qe)
d ln Qij (qe)

dqe

= µ (qe)
c0(qe)
c(qe)

+
x0e (qe)
xe (qe)

+ µ (qe) #P,cross
Q�ij

(qe)


x0e (qe)
xe (qe)

+
l0e (qe)
le (qe)

+ x
L0

w(qe)
Lw(qe)

�

= µ (qe)
c0(qe)
c(qe)

+
h
1 + µ (qe) #P,cross

Q�ij
(qe)

i x0e (qe)
xe (qe)

+
µ (qe) #P,cross

Q�ij
(qe)

1 � x s�1
s

d ln le (qe)
dqe

+
xµ (qe) #P,cross

Q�ij
(qe)

1 � x s�1
s

d
h
ln Xe(qe)

µ(qe)
+ ln

⇥
1 � tE

s (qe)
⇤i

dqe
,

where the third equation is derived by (OC19) and

µ (qe)
c0(qe)
c(qe)

+
h
1 + µ (qe) #P,cross

Q�ij
(qe)

i x0e (qe)
xe (qe)

= µ (qe)


c0(qe)
c(qe)

+
s � 1

s

x0e (qe)
xe (qe)

�

= µ (qe)
d ln Xe(qe)

µ(qe)

dqe
+

dµ (qe)
dqe

.

Therefore,

µ (qe)
d ln Pij

�
Qij, Q�ij (qe) , qe

�

dqe
|Qij=Qij(qe) +

x0e (qe)
xe (qe)

=
µ (qe) #P,cross

Q�ij
(qe)

1 � x s�1
s

d ln le (qe)
dqe

+
µ (qe)� x

1 � x s�1
s

d ln [Xe (qe) /µ (qe)]
dqe

+
xµ (qe) #P,cross

Q�ij
(qe)

1 � x s�1
s

d ln
⇥
1 � tE

s (qe)
⇤

dqe
+

dµ (qe)
dqe

=


(µ (qe)� x)

1 + #e

#e
� 1
� d ln[Xe(qe)/µ(qe)]

dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘

+µ (qe) #P,cross
Q�ij

(qe)

⇣
1 + x 1+#e

#e

⌘ d ln[1�tE
s (qe)]

dqe
+

d ln[1�tE
e (qe)]

dqe

1+#e
#e

� s�1
s

⇣
1 + 1+#e

#e
x
⌘ +

dµ (qe)
dqe

,



where the second equation is derived by (OC20). In addition, we have

1 � Fe(qe)
fe(qe)

1 + #e

#e


µ (qe)

∂ ln P (Q (qe) , qe)
∂qe

+
x0e (qe)
xe (qe)

�

=


(µ (qe)� x)

1 + #e

#e
� 1
�

H(qe) +
1 � Fe(qe)

fe (qe)
d ln [µ (qe)� x]

dqe

+µ (qe) #P,cross
Q�ij

(qe)
1 � Fe(qe)

fe(qe)
1 + #e

#e

⇣
1 + x 1+#e

#e

⌘ d ln[1�tE
s (qe)]

dqe
+

d ln[1�tE
e (qe)]

dqe

1+#e
#e

�
1 � s�1

s x
�
� s�1

s

.

Substituting 1�Fe(qe)
fe(qe)

1+#e
#e

h
µ (qe)

∂ ln P(Q(qe),qe)
∂qe

+ x0e(qe)
xe(qe)

i
and d ln le(qe)

dqe
in (OC14) and (OC12) by the above

equation and (OC20), respectively, and rearrange the formulas, we have

1
1 � tE

e (qe)
=

1 + [1 � ḡe(qe)]

8
><

>:

H(qe)
h
(µ (qe)� x) 1+#e

#e
� 1
i
+ 1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe
+

µ (qe) #P,cross
Q�ij

(qe)
1�Fe(qe)

fe(qe)
(1+x 1+#e

#e )
d ln[1�tEs (qe)]

dqe +
d ln[1�tEe (qe)]

dqe
1� s�1

s ( #e
1+#e +x)

9
>=

>;

µ⇤

and

1
1 � tE

s (qe)
=

µ⇤

µ (qe)
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe)

2

66666664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥
2

66664

1+#e
#e

d


ln Xe(qe)
µ(qe)

�

dqe +

"
d ln[1�tEs (qe)]

dqe +(1�x s�1
s )

d ln[1�tEe (qe)]
dqe

#

1+#e
#e (1�x s�1

s )� s�1
s

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

77775

3

77777775

=
µ⇤

µ (qe)
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe)

2

666664

[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)

[1�ḡe(qe)][1�Fe(qe)]
fe(qe)

2

6664

d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe
� d ln[µ(qe)�x]

dqe

+
d ln[1�tEs (qe)]

dqe +(1�x s�1
s )

d ln[1�tEe (qe)]
dqe

(1�x s�1
s )� #e

1+#e
s�1

s

3

7775

3

777775
,

where H(qe) =
1�Fe(qe)

fe(qe)


1+#e

#e
d ln[Xe(qe)/µ(qe)]

dqe
1+#e

#e (1�x s�1
s )� s�1

s

+ d ln[µ(qe)�x]
dqe

�
.



Set

H0 (qe) =

8
<

:
[1 � ḡe(qe)]

n
1�Fe(qe)

fe(qe)

s�1
s x

µ(qe)
d ln[µ(qe)�x]

dqe
�
h

s�1
s �

⇣
1 � x

µ(qe)

⌘
1+#e

#e

i
H(qe)

o

+#P,cross
Q�ij

(qe) [1 � ge(qe)]� 1
µ(qe)

9
=

; ,

H1 (qe) =

1 +

8
><

>:

[1 � ḡe(qe)] H(qe)
⇣
[µ (qe)� x] 1+#e

#e
� 1
⌘
+ [1 � ḡe(qe)]

1�Fe(qe)
fe(qe)

d ln[µ(qe)�x]
dqe

� [1 � ḡe(qe)]
1�Fe(qe)

fe(qe)
µ (qe) #P,cross

Q�ij
(qe)

1+ 1+#e
#e x

1� s�1
s ( #e

1+#e +x)
d ln H0(qe)

dqe

9
>=

>;

µ⇤

=

1 +

8
<

:

[1 � ḡe(qe)] H(qe)
h
[µ (qe)� x] 1+#e

#e
� 1
i

+ [1 � ḡe(qe)]
1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe
� H2 (qe)

1+ 1+#e
#e x

1+#e
#e x

µ⇤ d ln H0(qe)
dqe

9
=

;

µ⇤ ,

H2 (qe) = [1 � ḡe(qe)]
1 � Fe(qe)

fe(qe)
µ (qe)

µ⇤ #P,cross
Q�ij

(qe)
1+#e

#e
x

1 � s�1
s

⇣
#e

1+#e
+ x
⌘ ,

where H(qe) =
1�Fe(qe)

fe(qe)


1+#e

#e
d ln[Xe(qe)/µ(qe)]

dqe
1+#e

#e (1�x s�1
s )� s�1

s

+ d ln[µ(qe)�x]
dqe

�
.

We have
1

1 � tE
s (qe)

= H0 (qe)
h
1 � tE

e (qe)
i

and
1

1 � tE
e (qe)

= H1 (qe)� H2 (qe)
d ln

⇥
1 � tE

e (qe)
⇤

dqe
.

Solving the above differential equation, we have

1 � tE
e (qe) =

h
1 � tE

e
�
qe
�i

e�
R qe

qe
H1(s)
H2(s)

ds
+
Z qe

qe

e�
R s

qe
H1(u)
H2(u)

du 1
H2 (s)

ds,

Last, according to (OC14), when qe is finite, such that 1 � Fe
�
qe
�
= 0,

tE
e (qe)

1�tE
e (qe)

= 1�µ⇤

µ⇤ .

OC.5.4 Part Two: A Result for Comparation

Notice that

tE
s (qe)

1 � tE
s (qe)

=

fRE(qe)z }| {
µ⇤

µ (qe)
� 1
�
+
h
1 � tE

e (qe)
i

gIRE(qe)z }| {

#P,cross
Q�ij

(qe)

2

6664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥

2

4 1+#e
#e

l0e(qe)
le(qe)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

5

3

7775

=

fRE(qe)z }| {
µ⇤

µ (qe)
� 1
�
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe)

2

66666664

[1 � ge(qe)]� [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

⇥2

66664

1+#e
#e

d
dqe

"
ln

Xe(qe)[1�tEs (qe)]
µ(qe)

#
+[1�x s�1

s ]
d ln[1�tEe (qe)]

dqe

1+#e
#e � s�1

s (1+ 1+#e
#e x)

+
d ln


µ(qe)#
P,cross
Q�ij

(qe)

�

dqe

3

77775

3

77777775

.



When tE0
s (qe) = tE0

e (qe) = 0,

tE
s (qe)

1 � tE
s (qe)

=


µ⇤

µ (qe)
� 1
�
+
h
1 � tE

e (qe)
i

#P,cross
Q�ij

(qe) [[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)] .

Notice that

1
1 � tE

e (qe)
=

1
µ⇤

2

641 + [1 � ḡe(qe)]

8
><

>:

h
(µ (qe)� x) 1+#e

#e
� 1
i

H(qe) +
1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe
+

µ (qe) #P,cross
Q�ij

(qe)
1�Fe(qe)

fe(qe)
(1+x 1+#e

#e )
d ln[1�tEs (qe)]

dqe +
d ln[1�tEe (qe)]

dqe
1� s�1

s ( #e
1+#e +x)

9
>=

>;

3

75 .

We have the following results when
d ln[1�tE

e (qe)]
dqe

=
d ln[1�tE

s (qe)]
dqe

= 0:

1
1 � tE

e (qe)
=

1 + [1 � ḡe(qe)]
n

H(qe)
h
(µ (qe)� x) 1+#e

#e
� 1
i
+ 1�Fe(qe)

fe(qe)
d ln[µ(qe)�x]

dqe

o

µ⇤ .

If in addition µ0 (qe) = 0:

1
1 � tE

e (qe)
=

1 + [1 � ḡe(qe)] H(qe)
h
[µ (qe)� x] 1+#e

#e
� 1
i

µ⇤ .

OC.6 Proof of Proposition 6

(i) Notice that (OA26). Denote by yi
e, Fi

ye(y
i
e), and f i

ye(y
i
e) the initial profit, CDF, and PDF of initial profit,

respectively. 1�Fi
ye (y

i
e(bqe))

yi
e(bqe) f i

ye(yi
e(bqe))

is the initial hazard ratio of profit. When the profit and sales taxes are linear in

the initial, the initial hazard ratio of profit 1�Fi
ye (y

i
e(bqe))

yi
e(bqe) f i

ye(yi
e(bqe))

= H (qe). Thus H (qe) is constant for qe � bqe, if the

initial hazard ratio of profit is constant for qe > bqe.

(ii) Notice that if for any qe > bqe, ge(qe) = bge is constant, ge(qe) is also constant and equal to bge for any

qe � bqe. With the above two findings, part two of Proposition 6 follow directly from Theorem 1.

(iii) To prove part three of Proposition 6, first note that 1
1�bte

and thus bte increases with µ. Notice that

for any qe 2 Qe, µ (qe) non-decreases with the decrease of I, µ as a weighted average of µ (qe) must non-

decreases with the decrease of I. Thus a condition guarantees that, given µ, 1
1�bte

increases with bµ is a

sufficient condition for bte to be increasing with the decrease of I. We now show that (OC21) is such a

condition.



To see this, we first treat bge and µ as given and take the derivative of 1
1�bte

with respect to bµ:

d
⇣

1
1�bte

⌘

dbµ
=

� 1+(1�bge) bH[ 1+#e
#e (bµ�x)�1]
bµ2 +

(1�bge) bH 1+#e
#e

bµ +
s

s�1
1

(bµ)2
s

s�1�x (1 � bge)
⇣

1 � bH
⌘

1 � x
s

s�1�x
µ�bµ
bµ

�

x
s

s�1�x
µ
bµ2

2

4
1
bµ

h
1 + (1 � bge) bH

h
1+#e

#e
(bµ � x)� 1

ii

+
1� s

s�1
1
bµ

s
s�1�x (1 � bge)

⇣
1 � bH

⌘

3

5

h
1 � x

s
s�1�x

µ�bµ
bµ

i2

Rearranging the right side of the above equation, we find that d
dbµ

⇣
1

1�bte

⌘
> 0 if and only if

(1 � bge) bH

2

64
�

s
s�1 � x

� �
bµ � xµ s�1

s

� 1+#e
#e

� 1
#

ye ,top
1�bte

�

+
�

s
s�1 � xµ s�1

s

�

3

75 >
s

s � 1
� x.

Note that the term in the bracket is positive, because for any qe 2 Qe, µ (qe)  s
s�1 . Thus, we have

1 � bge >
s

s�1 � x

bH

2

64
�

s
s�1 � x

� �
bµ � xµ s�1

s

� 1+#e
#e

� 1
#

ye ,top
1�bte

�

+
�

s
s�1 � xµ s�1

s

�

3

75

.

Dividing both the numerator and denominator of the right side of the above inequality by s
s�1 � x and

substituting 1
#

ye ,top
1�bte

by 1+#e
#e

(bµ � x)� 1, we have

bge < 1 � 1
x
�
1 � µ s�1

s

� 1+#e
#e

+ 1 +
s

s�1�xµ s�1
s

s
s�1�x

�
bH

. (OC21)

(OC21). Notice that µ  s
s�1 , the term in the bracket of the right side of (A64) is not less than 2. Thus,

condition (A64) satisfies if bge < 1 � 1
2 bH .

Last, since for any I > 1, (A65) is a sufficient condition for bte to be increasing with the marginal decrease

of I (just suppose that I is continuous), and bte is twice continuously differentiable with respect to I, accord-

ing to the mean value theorem, (A65) is also a sufficient condition for bte to be increasing with the decrease

of I from n + 1 to n, where n 2 N+.⌅

OC.7 Proof of Proposition 5

(i) Rewriting the general tax formula for the entrepreneurs in equation (36) for the case with uniform

markups, we have part one of Proposition 5. By the definitions of #
ye
1�te

(qe) and #P,cross
Q�ij

(qe) (see section



A.2 for details), we have:

1
1 � te (qe)

=
1 + [1 � ḡe(qe)] H(qe)

h
1+#e

#e
[µ � x]� 1

i

µ
+

s
s�1

s
s�1 � x


s � 1

s
� 1

µ

�
{[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)} .

(ii) Supposing go (·) (such that ḡo (·)) is exogenous, we have:

d
h

1
1�te(qe)

i

dµ
=

1
µ2

2

4
µ [1 � ḡe(qe)] H(qe)

1+#e
#e

� [1 � ḡe(qe)] H(qe)
h
(µ � x) 1+#e

#e
� 1
i

+
s

s�1
s

s�1�x {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}� 1

3

5

=
1
µ2

2

4
[1 � ḡe(qe)] H(qe)

h
x 1+#e

#e
+ 1
i

+
s

s�1
s

s�1�x {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}� 1

3

5

=
1
µ2

2

4
[1 � ḡe(qe)] H(qe)x

h
1+#e

#e
� 1

s
s�1�x

i

+ [1 � ge(qe)]
s

s�1
s

s�1�x � 1

3

5

and

d
h

1�tw(qw)
1�te(qe)

i

dµ
=

1 � tw (qw)
µ

d
h

µ
1�te(qe)

i

dµ

=
1 � tw (qw)

µ

2

4 [1 � ḡe(qe)] H(qe)
1+#e

#e
+

1
s

s�1�x {[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)}

3

5 .

According to the above equations, te (qe) increases in µ if and only if:

[1 � ḡe(qe)] H(qe)x

"
1 + #e

#e
� 1

s
s�1 � x

#
+ [1 � ge(qe)]

s
s�1

s
s�1 � x

� 1 > 0,

i.e.,

ge(qe) < 1 �
1 � [1 � ḡe(qe)] H(qe)x

h
1+#e

#e
� 1

s
s�1�x

i

s
s�1
s

s�1�x

(OC22)

=
x (s � 1)

s

⇢
1 + [1 � ḡe(qe)] H(qe)


1 + #e

#e

✓
s

s � 1
� x

◆
� 1
��

.

1�tw(qw)
1�te(qe)

increases in µ iff

[1 � ḡe(qe)] H(qe)
1 + #e

#e
+

1
s

s�1 � x
{[1 � ge(qe)]� [1 � ḡe(qe)] H(qe)} > 0,

i.e.,

ge(qe) < 1 + [1 � ḡe(qe)] H(qe)


1 + #e

#e

✓
s

s � 1
� x

◆
� 1
�

, (OC23)



or equivalently

ge(qe)� 1 + [1 � ḡe(qe)] H(qe) < [1 � ḡe(qe)] H(qe)
1 + #e

#e

✓
s

s � 1
� x

◆
,

which must be true when [1 � ge(qe)]� [1 � ḡe(qe)] H(qe) > 0 and H(qe) > 0.

(iii) When ge(qe) = ḡe(qe) and H(qe) > 0, inequality (OC22) is equivalent to

ge(qe) <

x(s�1)
s

n
1 + H(qe)

h
1+#e

#e

�
s

s�1 � x
�
� 1
io

1 + x(s�1)
s H(qe)

h
1+#e

#e

�
s

s�1 � x
�
� 1
i ,

where
1+H(qe)[ 1+#e

#e ( s
s�1�x)�1]

s
x(s�1) +H(qe)[ 1+#e

#e ( s
s�1�x)�1]

increases in H(qe)
h

1+#e
#e

�
s

s�1 � x
�
� 1
i
, because s

x(s�1) > 1. Besides, under

condition (24), we have 1+#e
#e

�
s

s�1 � x
�
� 1 > 0 and that H(qe)

h
1+#e

#e

�
s

s�1 � x
�
� 1
i

increases in H(qe). Thus,

when H(qe) > 0, the above inequality holds if

ge(qe) 
x (s � 1)

s
.

Analogously, when ge(qe) = ḡe(qe) < 1 and H(qe) > 0, inequality (OC23) must holds.⌅



OD Discussion and Robustness

OD.1 Kimball Technology

Set the Lagrangian function as

£
�

Lw, lw, le, Vw, Ve, Q; l, l0, yw, ye, k, j
�

= Â
o2{w,e}

No

Z

qo

G (Vo(qo)) efo (qo) dqo + l

"
Q � Â

o2{w,e}
No

Z

qo
[Vo (qo) + fo (lo (qo))] fo (qo) dqo � R

#

+l0


Nw

Z

qw

xw (qw) lw (qw) fw (qw) dqw � Ne

Z

qe

Lw (qe) fe (qe) dqe

�

+l00


1 �
Z

qe

c (qe)Y
✓

Q (qe)
Q/Ne

◆
dFqe (qe)

�

+
Z

qw

yw (qw)


lw (qw) f0

w (lw (qw))
x0w (qe)
xw (qe)

� V 0
w(qw)

�
dqw

+
Z

qe

ye (qe)


f0

e (le (qe)) le (qe)


µ(qe)

c0 (qe)
c (qe)

+
x0e (qe)
xe (qe)

�
� V 0

e (qe)

�
dqe,

where µ(qe) is a function of Q(qe)
Q .

Taking partial integrals yields the following

�
Z

qe

yo(qe)V 0
o(qe)dqe = Vo(qo)yo(qo)� Vo(qo)yo(qo) +

Z

qo

y0
o(qo)Vo(qo)dqo.

The derivatives with respect to the endpoint conditions yield boundary conditions:

yo(qo) = yo(qo) = 0, o 2 {w, e} .

Thus, Z

qo

y0
o (qo) dqo = 0,

Substituting the above conditions into the Lagrangian function, yields the following first-order conditions:

∂£
∂Q

= l + Nel
00
Z

qe

c (qe)Y0
✓

Q (qe)
Q/Ne

◆
Q (qe)

Q2 dFe (qe) = 0, o 2 {w, e} , (OD2)

∂£
∂Vo(qo)

= G0(Vo(qo))No efo (qo) + y0
o(qo)� lNo fo (qo) = 0, (OD3)

∂£
∂lw (qw)

= �lNwf0
w (lw (qw)) fw (qw) + l0Nwxw (qw) fw (qw) + yw (qw)

f0
w (lw (qw))
xw (qw)

1 + #w

#w
= 0, (OD4)

∂£
∂Lw(qe)

=

2

4 �l00Nec (qe)Y0
⇣

Q(qe)
Q/Ne

⌘
1
Q

∂Q(qe)
∂Lw(qe)

fe (qe)� l0Ne fe (qe)

+ye (qe) f0
e (le (qe)) le (qe)

∂µ(qe)
∂Q(qe)

∂Q(qe)
∂Lw(qe)

c0(qe)
c(qe)

3

5 = 0, (OD5)



and

∂£
∂le(qe)

= ye (qe) f0
e (le (qe))

1 + #e

#e


µ(qe)

c0 (qe)
c (qe)

+
x0e (qe)
xe (qe)

�
+ (OD6)

ye (qe) f0
e (le (qe)) le (qe)

∂µ(qe)
∂Q (qe)

∂Q (qe)
∂le(qe)

c0 (qe)
c (qe)

+

�l00Nec (qe)Y0

✓
Q (qe)

Q

◆
1
Q

∂Q (qe)
∂le(qe)

fe (qe)� lf0
e (le (qe)) Ne

�
fe (qe) = 0, 8qo 2 Qo.

Substitute l00 in (OD5) by (OD2) and use (A69):ts (qe) = 1 � W
v(qe)

= 1 � W
P(qe)
µ(qe)

∂Q(qe)
∂Lw(qe)

; P (qe)
∂Q(qe)
∂Lw(qe)

=

µ(qe)W
1�ts(qe)

; P(qe)Q(qe)
WLw(qe)

x = µ(qe)
1�ts(qe)

P (qe)
∂Q (qe)
∂Lw(qe)

=
l0

l
+

[1 � ḡe(qe)] [1 � Fe(qe)]
fe (qe)

f0
e (le (qe)) le (qe)

∂µ(qe)
∂Q (qe)

∂Q (qe)
∂Lw(qe)

c0 (qe)
c (qe)

,

where we substitute ye(qe)
lNe fe(qe)

by (A42). Substituting P (qe)
∂Qij(qe)
∂Lw(qe)

by µ(qe)W
1�ts(qe)

gives:

1
1 � ts (qe)

=
l0

l

µ (qe)W
+

[1 � ḡe(qe)] [1 � Fe(qe)]
fe (qe)

f0
e (le (qe)) le (qe)

WLw(qe)
∂ ln µ(qe)
∂ ln Q (qe)

x
c0 (qe)
c (qe)

, (OD7)

Equivalently,

1
1 � ts (qe)

=
l0

l

µ (qe)W
+

[1 � ḡe(qe)] [1 � Fe(qe)]
fe (qe)

f0
e (le (qe))

P (qe)
∂Q(qe)
∂le(qe)

Q (qe) P (qe)
WLw(qe)

∂ ln µ(qe)
∂ ln Q (qe)

x
c0 (qe)
c (qe)

.

Substitute Q(qe)P(qe)
WLw(qe)

by P(qe)Q(qe)
WLw(qe)

x = µ(qe)
1�ts(qe)

and substitute f0
e(le(qe))

P(qe)
∂Qij(qe)
∂le(qe)

by 1�te(qe)
µ(qe)

1
1 � ts (qe)

=
l0

l

µ (qe)W
+

[1 � ḡe(qe)] [1 � Fe(qe)]
fe (qe)

1 � te (qe)
1 � ts (qe)

∂ ln µ(qe)
∂ ln Q (qe)

c0 (qe)
c (qe)

.

Rearrange the above equation to derive

1 � ts (qe) =
1 � [1�ḡe(qe)][1�Fe(qe)]

fe(qe)
[1 � te (qe)]

∂ ln µ(qe)
∂ ln Q(qe)

c0(qe)
c(qe)

l0
lµ(qe)W

. (OD8)

Therefore,

1 � ts (q0e)
1 � ts (qe)

=
1 � [1�ḡe(q0e)][1�Fe(q0e)]

fe(q0e)
[1 � te (q0e)]

∂ ln µ(q0e)
∂ ln Q(q0e)

c0(q0e)
c(q0e)

1 � [1�ḡe(qe)][1�Fe(qe)]
fe(qe)

[1 � te (qe)]
∂ ln µ(qe)
∂ ln Q(qe)

c0(qe)
c(qe)

.

Substitute l00Ne in (OD6) by (OD2) and use (A69):

1 � f0
e(le(qe))

P(qe)
∂Q(qe)
∂le(qe)

f0
e(le(qe))

P(qe)
∂Q(qe)
∂le(qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe (qe)

2

4
1+#e

#e

h
µ(qe)

c0(qe)
c(qe)

+ x0e(qe)
xe(qe)

i

+µ(qe)
∂ ln µ(qe)
∂ ln Q(qe)

c0(qe)
c(qe)

3

5 (OD9)



where we substitute ye(qe)
lNe fe(qe)

by (A42). Using 1�te(qe)
µ(qe)

= f0
e(le(qe))

P(qe)
∂Qij(qe)
∂le(qe)

to substitute f0
e(le(qe))

P(qe)
∂Q(qe)
∂le(qe)

in (OD9), delivers

(OD10).
1 � 1�te(qe)

µ(qe)

1�te(qe)
µ(qe)

= [1 � ḡe(qe)]
1 � Fe(qe)

fe (qe)

2

4
1+#e

#e

h
µ(qe)

c0(qe)
c(qe)

+ x0e(qe)
xe(qe)

i

+µ(qe)
∂ ln µ(qe)
∂ ln Q(qe)

c0(qe)
c(qe)

3

5 . (OD10)



OE Supplements to Quantitative Analysis

Figure OE2 gathers results regarding to the changes with k.

(a) Labor Tax Wedges (b) Profit Tax Wedges

Figure OE2: Tax Wedges Change with k

Figure OE3 gathers changes in profit tax rates with the changes in x and s.

(a) Profit Tax Wedges (b) Profit Tax Wedges

Figure OE3: Profit Tax Wedges Change with x and s

Figure OE4 gathers changes in labor income tax rates with the changes in x and s.



(a) Labor Income Tax Wedges (b) Labor Income Tax Wedges

Figure OE4: Labor Income Tax Wedges Change with x and s

.
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