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1 Relational Contracts

In the previous moral hazard models, we require y–the dollar value of the agent’s contribution

to the firm–to be observable,ex ante describable and ex post verifiable. However, for most

principals, it is extremely difficult to measure y in a way that would allow the agent’s

pay to be based on y through a compensation contract that could be enforced by a court, if

necessary. One possible reason is that the agent’s contribution to firm value is not objectively

measurable (advertising firms for example). Even if the agent’s contribution to firm value is

not objectively measurable, however, it sometimes can be subjectively assessed by superiors

who are well placed to observe the subtleties of the agent’s behavior and opportunities.

Another possibility is that the agent’s contribution to firm value is “observable but not

verifiable”. That is, the agent’s contribution is observable by the parties but not verifiable

by a court.

In these situations, it is impossible to provide incentives to the agent in the single period

setting. However, if the game is repeated for infinitely many times, we can use relational

contracts to induce efforts. Relational contracts are informal agreements between the prin-

cipal and agent about the compensation. Relational contracts cannot be enforced by a third

party and so must be self-enforcing agreements. In the repeated setting, when the future

relationship is sufficiently valuable, each player has no incentive to renege.

1.1 Toy Model Setup

The model discussed here is based on Baker, Gibbons, and Murphy (1994). There are two

players, the Principal (P) who owns the firm; and the Agent (A), who works in the firm. The
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worker chooses an unobservable action, a, that stochastically determines the his contribution

to firm value, y. In particular, y equals either L or H, and the worker’s action, 0 ≤ a ≤ 1,

equals the probability that y = H. (That is, higher actions produce higher probabilities of

y = H; the action a = 0 guarantees that y = L will occur.) The worker incurs an action cost

c(a), where c(·) is a strictly increasing and convex function with c′(0) = 0 and c′(1) = ∞.

We assume y is either not verifiable or not objectively measured. Therefore, it cannot be

the basis of an enforceable contract. However, y can be subjectively measured. The timing

of events in a stage game is the following. First, the firm offers the worker a compensation

package (s, b), where s is a base salary paid when the worker accepts the offer and b is a

relational-contract bonus meant to be paid only when y = H. Second, the worker either

accepts the compensation package or rejects it in favor of an alternative employment oppor-

tunity with payoff w0. Third, if the worker accepts then the worker chooses an action at

cost c(a). The firm does not observe the worker’s action. Fourth, the firm and the worker

observe the realization of the worker’s contribution to firm value, y. Finally, if y = H then

the firm chooses whether to pay the worker the bonus b specified in the relational contract.

Both players are risk neutral. The firm’s payoff when the worker’s contribution is y and

total compensation is w is the profit y − w. The worker’s payoff from choosing an action a

and receiving total compensation w is w − c(a).

In this stage game, the unique subgame perfect equilibrium outcome is that the firm

would choose not to pay a bonus, so the worker (anticipating the firm’s decision) would

choose not to supply any effort. So the firm (anticipating the worker’s choice) would not pay

a salary greater than L. Whether the worker is employed at this firm would then depend

on whether w0 is greater or less than L. If w0 ≤ L, then the worker will be employed at the
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firm, but will not supply any effort. We will assume hereafter that w0 > L, in which case the

worker would not be employed at this firm in the single-period model. Meanwhile, denote

aFB to solve:

max
a
L+ a(H − L)− c(a).

We require

L+ aFB(H − L)− c(aFB)− w0 > 0

such that it is socially optimal to employ the worker.

1.2 The Repeated Game

The key issue in the single-period setting is that given the contract is not enforceable by

the third party, the firm always has incentives to renege and stop paying the bonus b.

Anticipating this, the worker would choose not to supply any effort. However, if the repeated

setting, the future concern may force the firm to honor the relational contract.

We will consider the game where the single-period game is repeated for infinitely many

times. The firm is long-lived with discount rate δ while each worker lives for only one period.

However, the new workers can observes all the histories (i.e., the output y and whether the

firm honors the contract or not).

Since the worker is short-lived, if the worker accepts the contract and believes the firm

is going to honor the contract, the worker’s optimal action solves
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max
a
s+ ab− c(a).

The assumptions on c(·) guarantees that there is a unique maximizer a⋆(b) satisfying c′(a) =

b. The worker will accept the contract if and only if

s+ ba⋆(b)− c(a⋆(b)) ≥ w0.

The firm’s expected payoff is

Eπ = L+ a⋆(b)(H − L)− s− ba⋆(b).

Therefore, the highest expected payoff that the firm can receive in each period is:

Eπ(b) = L+ a⋆(b)(H − L)− w0 − c(a⋆(b)).

In analyzing this repeated game, we focus on grim trigger strategies: the worker accepts

the contract as long as the expected payoff exceeds the outside option and the firm honors

the contract in all of the previous periods. Once the firm does not honor the contract, the

worker rejects the contract and the firm will always not honor the contract afterwards. We

are interested in deriving the highest bonus achievable using such trigger strategies. Notice

that at state H, the firm’s discounted expected payoff if it honors the contract is:

(1− δ)(H − b− s) + δ(1− δ)Eπ2 + δ2(1− δ)Eπ3 + · · · .
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If the firm does not honor the contract, the firm does not pay the bonus b in the current

period and its discounted expected payoff is:

(1− δ)(H − s) + δ(1− δ)0 + δ2(1− δ)0 + · · · .

By the one-shot deviation principle, the firm will honor the contract at state H if and only

if:

(1− δ)b ≤ δ(1− δ)Eπ2 + δ2(1− δ)Eπ3 + · · · .

Since Eπt ≤ Eπ(b), the highest b is achieved by letting Eπt = Eπ(b) for all t, which yields:

1− δ

δ
b ≤ Eπ(b).

Let r = 1−δ
δ

∈ (0,∞). Obviously, the higher r (or lower δ), the harder to deter the firms

to deviate. If r is sufficiently low (rL ≤ Eπ(H−L)
H−L ), the first best action aFB can be achieved

by setting b = bFB = H − L. For r in the intermediate region (rM), the highest achievable

bonus falls as r increases, because the higher value of r makes future profits less valuable,

so the firm is more tempted to renege. Finally, if r is sufficiently large rH , no incentives can

be provided through relational contracts.

Remark 1 Another solution to the moral hazard problems in repeated setting is efficiency

wage discussed by Shapiro and Stiglitz (1984). In this model, both the firm and the worker

are long-lived. And the firm only pays the basic wage (no bonus). There are two key elements

in this model: 1) the wage is above the market clearing level; and 2) there is unemployment

and if the worker is found to be shirking, the worker will be fired. It is the combination of
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Figure 1: Highest bonus supported by grim trigger strategies.

unemployment and high wages that provide incentives to the worker.

1.3 General Model

1. Principal and agent are both risk neutral;

2. Infinite time horizon;

3. At the beginning of date t the principal offers:

• a fixed salary wt and

• a contingent bonus bt : ϕ → R, where ϕ is the set of observed performance

outcomes.

4. The agent decides whether to accept or reject the offer;

5. If the agent rejects, the principal and the agent receives their outside option utilities

(π̄, ū), where s̄ = π̄ + ū;

6. If the agent accepts, he observes a cost parameter θt ∈ Θ = [θ, θ̄], with CDF P (·). θt

is distributed independently across periods;
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7. Then the agent chooses an effort et ∈ [0, ē] and incurs a cost of c(et, θt) with c(et, θt) ≥ 0

and c(0, θt) = 0 for all θt;

8. Then output yt ∈ [y, ȳ] is drawn from the cdf F (y|e);

9. Finally the principal decides on whether to pay the bonus bt.

Remarks:

• The fixed wage wt can be enforced by the courts;

• The bonus payment bt is voluntary. Thus, in equilibrium the principal must have an

incentive to pay bt;

• The agent observes all the relevant information: {et, θt, yt};

• The principal observes ψt ⊂ {et, θt, yt}:

– all information is observable but not verifiable (MacLeod and Malcomson 1989):

ψt = {et, θt, yt};

– hidden action: ψt = {θt, yt};

– hidden information: ψt = {et, yt}.

The principal’s payoff is given by:

πt = (1− δ)E

[∑
τ≥t

δτ−t{dτ (yτ −Wτ ) + (1− dτ )π̄}

]
,

where dτ = 1 if the agent accepts the contract and = 0 otherwise; Wτ is the payment of the

principal to the agent at period τ .

9



The agent’s payoff is given by:

ut = (1− δ)E

[∑
τ≥t

δτ−t{dτ (Wτ − c(eτ , θτ )) + (1− dτ )ū}

]
.

The expected surplus is st = πt + ut.

1.4 Self-enforcing Stationary Relational Contract

A relation contract describes for any period t and any history

• the compensation the principal should offer (and which should be paid);

• whether the agent should accept or reject the offer; and in the event of acceptance,

• the action the agent should take as a function of his realized costs θt.

Such a contract is self-enforcing if it describes a perfect public equilibrium (PPE) of the

repeated game. A PPE is a Perfect Bayesian Equilibrium in which strategies are contingent

on public histories only.

Stationary contracts: Wt = w + b(ψt) and et = e(θt). It is without loss of generality

to consider stationary contracts: if an optimal contract exists, then there are stationary

contracts that are optimal.

Given a stationary contract, denote

π = Eθ,y[y −W (ψ)|e = e(θ)],

u = Eθ,y[W (ψ)− c(e, θ)|e = e(θ)],
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s = π + u and W (ψ) = w + b(ψ). Then, a self-enforcing contract must satisfy the following

conditions:

1. The contract must be individually rational, i.e., each party must get at least its outside

option utility: u ≥ ū and π ≥ π̄;

2. The contract must be incentive compatible, i.e., it must be optimal for the agent to

choose e(θ):

e(θ) ∈ argmaxeEy[W (ψ|e)]− c(e, θ);

3. The dynamic enforcement constraint requires that at the end of each period no party

has an incentive to renege on its payment obligations, i.e.,

δ

1− δ
(π − π̄) ≥ sup

ψ
b(ψ),

and

δ

1− δ
(u− ū) ≥ − inf

ψ
b(ψ).

The dynamic enforcement constraint implies that:

δ

1− δ
(s− s̄) ≥ sup

ψ
b(ψ)− inf

ψ
b(ψ) = sup

ψ
W (ψ)− inf

ψ
W (ψ).

Proposition 1 An effort schedule e(θ) that generates expected surplus s can be implemented

with a stationary relational contract if and only if there is a payment schedule W : ϕ → R

such that for all θ:
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e(θ) ∈ argmaxe {Ey[w(ψ)|e]− c(e, θ)} (IC)

and

δ

1− δ
(s− s̄) ≥ sup

ψ
W (ψ)− inf

ψ
W (ψ) (DE).

Proof. We have shown already that these conditions are necessary for a relational contract

to be self-enforcing. To see that they are also sufficient consider a payment schedule W (ψ)

and an effort profile e(θ) that satisfies (IC) and (DE). Let

b(ψ) = W (ψ)− inf
ψ
W (ψ),

and

w = ū− Eθ,y [b(ψ)− c(e, θ)|e = e(θ)] .

Consider a stationary contract with w, b(ψ) and e(θ) and the agent chooses d = 0 if the

principal does not pay b(ψ). This contract can be self-enforcing and implement e(θ).

1.4.1 Perfect Information

Suppose that the cost parameter θt, the agent’s action et and the outcome yt are observable

by the principal and the agent, but cannot be verified to the courts. For simplicity we will

also assume that θt is a constant. This is the case considered by MacLeod and Malcomson

(1989). In this case we have:

Proposition 2 In the perfect information case, the stationary action e that gives rise to

expected social surplus s can be implemented with a stationary relational contract if and only

12



if

δ

1− δ
(s− s̄) ≥ c(e) (DE).

To see that this condition is also sufficient consider the following stationary relational

contract. The agent gets the fixed wage w = ū at the beginning of each period. If he chooses

action e the principal pays an additional bonus b = c(e). If he chooses any other action

ẽ ̸= e, the principal pays no bonus and the agent chooses d = 0 in all future periods. If the

agent took action e and the principal did not pay b ≥ c(e), the agent chooses d = 0 in all

future periods. This is a subgame perfect equilibrium.

The above proposition has the following implications. The closer the discount factor to

1 the larger is the set of implementable actions. The larger the social surplus, the easier it

is to implement a given action. The higher the cost of an action, the more difficult it is to

implement this action.

1.4.2 Moral Hazard

Assume that the cost parameter θt is observable but the agent’s action et is not: W (θ, y) =

w + b(θ, y). Let effort be a continuous variable with ce > 0 and cee > 0. Finally, assume

that F (y|e) satisfies the monotone likelihood ratio property, i.e., fe(y|e)
f(y|e) is monotonically

increasing in y, and Convexity of the Distribution Function Condition (CDFC) is satisfied

as well: F (y|e = c−1(x; θ)) is convex in x for any θ.

Proposition 3 The optimal contract implements an effort schedule e(θ) ≤ eFB(θ). For

each θ, the payments W (θ, y) are one-step: W (θ, y) = W for all y ≤ ŷ(θ) and = W̄ =

W + δ
1−δ (s− s̄) otherwise.
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Since both parties are risk neutral, it is optimal to make the agent a residual claimant.

In other words, W (θ, y) = w + y, where w = ū − maxe(·)Eθ,y[y − c(e, θ)|e = e(θ)]. This

contract is not self-enforcing if

ȳ − y >
δ

1− δ
(s− s̄).

In that case, the payments W (θ, y) are one-step: W (θ, y) = W for all y ≤ ŷ(θ) and = W̄ =

W + δ
1−δ (s− s̄) otherwise.

1.4.3 Hidden Information

Assume that the principal can observe the agent’s effort level et , but he does not observe

the cost parameter θt.

Proposition 4 With hidden information, an effort schedule e(θ)that generates expected sur-

plus s can be implemented by a stationary contract if and only if e(θ) is non-increasing and

δ

1− δ
(s− s̄) ≥ c(e(θ), θ) +

∫ θ̄

θ

∂c(e(θ), θ)

∂θ
dθ.
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Figure 2: The stage game for the chain store paradox.

2 Reputations

2.1 Chain Store Paradox

The theoretical discussions of reputations is motivated by the classical chain store paradox

(see, e.g., Kreps, Milgrom, Roberts, and Wilson (1982) and Kreps and Wilson (1982)). The

stage game for the chain store paradox is given by Figure 2. There are two Nash equilibria in

the above stage game: (enter, accommodate) and (stay out, fight). Latter violates backward

induction.

2.1.1 A Two-Period Example

Chain store: the incumbent plays the game twice, against two different entrants (E1 and

E2), with the second entrant E2 observing outcome of first interaction. Incumbent receives

total payoffs.

“Chain store paradox”: the only backward induction (subgame perfect) outcome is that

both entrants enter, and incumbent always accommodates.

But, now suppose incumbent could be tough, t: such an incumbent receives a payoff
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Figure 3: A signaling game representation of the subgame reached by E1 entering.

of 2 from fighting and only 1 from accommodating. Other incumbent is normal, n. Both

entrants’ assigns probability ρ ∈ (0, 1
2
) to the incumbent being t. In the second market,

normal incumbent accommodates and tough fights. Conditional on entry in the first market,

the subsequent subgame can be represented by the following signalling game:

Note first that there are no pure strategy equilibria. There is a unique mixed strategy

equilibrium: n plays F with probability α and A with probability 1− α; t plays F for sure.

E2 enters for sure after observing A in the first period, and plays E with probability β after

observing F in the first period.

E2 is willing to randomize only if his posterior after F that the incumbent is t equals 1
2
.

Since that posterior is given by Bayes’ rule:

Pr[t|F ] = ρ

ρ+ (1− ρ)α
,

solving Pr[t|F ] = 1
2
yields α = ρ

1−ρ . α < 1 since ρ < 1
2
. Type n is willing to randomize if

4 = β3 + (1− β)5,
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which implies that β = 1
2
. In the first period, the first entrant E1 faces a probability of

fighting given by ρ + (1 − ρ)α = 2ρ. Hence, if ρ < 1
4
, E1 faces F with sufficiently small

probability (less than 1
2
) that he enters. However, if ρ ∈ (1

4
, 1
2
), the probability of F is

sufficiently high such that E1 stays out.

To summarize, for ρ < 1
4
, E1 enters with probability 1. After the entry, t fights for

sure and n fights with probability α = ρ
1−ρ . In the second period, E2 enters for sure after

observing A in the first period, and plays E with probability β = 1
2
after observing F in the

first period. For ρ ∈ (1
4
, 1
2
), E1 does not enter for sure and in the second period, E2 enters

for sure.

2.1.2 Infinite Horizon

Suppose now infinite horizon with the incumbent discounting at rate δ ∈ (0, 1) and a new

potential entrant in each period. The incumbent is a long-lived player with payoff (1 −

δ)
∑∞

t=0 δ
tut and the entrants are short-lived players. The incumbent has two different types

n and t. Type t incumbent always fights with the entry while the stage payoff for the type

n incumbent is given above.

Naturally, we can show the following is an equilibrium when δ > 1
3
: the n incumbent

fights all entrants as well, because the first time it fails to do so, it is revealed to be a type n

player and then all subsequent entrants enter and the n incumbent accommodates from then

on. However, this is NOT the only equilibrium of the infinite-horizon model. The problem

is that even if the incumbent is revealed to be type n, there are many subgame perfect

equilibrium in the subsequent game if the discount rate is sufficiently high. For example,

if δ > 1
3
, the following is also an equilibrium: “t always fights. n accommodates the first

17



entry, and then fights all subsequent entry if it has not accommodated two or more times

in the past. Once the incumbent has accommodated twice, it accommodates all subsequent

entry.” The multiplicity of equilibria suggests that it might be more convenient to try to

characterize the payoff set of equilibria without determining all of them explicitly. It turns

out that characterizing the payoff set also helps us eliminate some equilibria, which cannot

achieve the payoffs in the set.

Notice that if type t has prior probability greater than 1
2
, trivially there is never any

entry and the normal type has payoff 4. Therefore, we only need to focus on the case where

ρ < 1
2
.

Theorem 1 Suppose ρ < 1
2
. The normal type incumbent must receive a payoff of at least

1 + 3δ in any pure strategy Nash equilibrium.

Proof. Suppose the normal type incumbent always plays F . Then there is no entry and

the payoff is 4 > 1 + 3δ. Suppose the normal type does not always play F . Then there

exists a first period τ where the incumbent n starts to accommodate at time τ . In a pure

strategy equilibrium, if the incumbent does not accommodate at time τ , it must means that

this incumbent is tough and vice versa. After observing F in period τ , entrants conclude

that the firm is the t type, and there is no further entry. An easy lower bound on the normal

incumbent’s equilibrium payoff is then obtained by observing that the normal incumbent’s

payoff must be at least the payoff from mimicking the t type in period τ . The payoff from

such behavior is given by:
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(1− δ)
τ−1∑
t=0

δt × 4 + (1− δ)δτ × 1 + (1− δ)
∞∑

t=τ+1

δt × 4 = (1− δτ )4 + (1− δ)δτ + δτ+14.

The above expression is simplified to 4− 3δτ (1− δ). Since δτ ≤ 1, a lower bound of the

above expression is 4− 3(1− δ) = 1 + 3δ.

The above theorem implies that for δ > 1
3
, if the incumbent accommodates at time τ , it

cannot be the case that all entrants enter and the incumbent accommodates in every period

in the subsequent game. Otherwise, the payoff is (1− δτ )4 + δτ2 < 4− 3δτ (1− δ) for δ > 1
3
.

As δ converges to 1, 1 + 3δ converges to 4. Notice that the upper bound of equilibrium

payoff is 4 as well. Therefore, as δ goes to 1, the normal type incumbent’s payoff any pure

strategy Nash equilibrium converges to 4. This is in contrast to the complete information

repeated game, where the lower bound of payoff is 2 even if δ converges to 1 (an example of

reputation effect).

2.2 Bad Reputations

In this section, we will show that the reputation effect may not be always good. Sometimes,

the reputational concern of the long-run player to look good in the current period undermines

commitment power and results in the loss of all surplus. This is called “bad reputations”.

2.2.1 The Stage Game

There are two players in the stage games. A motorist (the principal) has a car which

is in need of repair. The motorist knows that the car requires one of two repairs with
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Figure 4: Payoffs for the motorist.

equal probability: an engine replacement or a mere tune-up; however the motorist lacks the

expertise to determine which repair is necessary. The motorist therefore considers bringing

the car to a certain mechanic (the agent) who possesses the ability to diagnose the problem

and perform the necessary repair. We will model this by supposing that the mechanic, if

hired, privately observes the state θ ∈ {θe, θt}, indicating respectively whether an engine

replacement is necessary, or a tune-up will suffice. Conditional on this information, the

mechanic then chooses a repair a ∈ {e, t}, indicating engine replacement, or tune-up.

P’s payoffs from the two possible repairs in the two different states are given by: (we will

assume that w > u > 0)

P also has an outside option which gives a constant payoff normalized to zero. The agent

has two possible types. If the agent is good, his payoffs are identical to those of the motorist.

If the agent is bad, he always prefers to choose e. The prior that the agent is bad is µ.

The stage game is an extensive-form game. First, the state is drawn by nature and

revealed to the agent but the principal. P then decides whether to hire A or not. If A is

hired, the good type has to choose between e and t.

We will use the action profile {1, 1} to denote the outcome in which the appropriate

action is always chosen under both states. {1, 0} corresponds to always providing e and

{0, 0} is always providing the wrong action.

20



Proposition 5 The stage game has a unique sequential equilibrium. In this equilibrium, the

good agent always chooses {1, 1} and P hires A if and only if µ ≤ 2u
u+w

< 1.

2.2.2 Bad Reputations: An Illustrating Example

Suppose the stage game is repeated. A is a long-lived player who discounts the future at

rate δ. P is a short-lived player. Assume only the actions in the first period is observable by

subsequent short-lived players. This means that a period t public history only includes the

actions in the first period. Beginning from the second period, since the actions do not affect

the subsequent outcomes, one would expect the unique sequential equilibrium is a repetition

of the sequential equilibrium in the stage game.

Proposition 6 Denote µ2 to be the prior at the beginning of the second period. If µ2 ≤

2u
u+w

< 1, then in the unique sequential equilibrium, P always hires A and the good agent

always chooses {1, 1}. If µ2 >
2u
u+w

, A will never be hired.

Now let’s consider a good A’s incentive to choose the appropriate action in the first

period. Obviously, if µ > 2u
u+w

, A is not hired in the first period. But if µ ≤ 2u
u+w

such that A

is hired and the state is θe, the good A has incentives to choose t to signal that he is good.

Especially when µ is sufficiently high, choosing t will decrease µ2 to zero and guarantee that

A is always hired in the subsequent periods. However, P will not hire A anticipating this

reputational concern. This leads to the following no-trade result:

Proposition 7 If µ ∈ ( u
w
, 2u
u+w

] and δ > u+w
2u+w

, the unique sequential equilibrium is such that

the good agent chooses {0, 1} and P never hires A in the first period.
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Proof. Notice in the subgame reached by P hiring A, the good A always chooses action t

at state t. Suppose at state θe, A chooses action e with probablity γ ∈ [0, 1]. This implies

that if γ > 0, after oberving e, µ2 would become:

φ(µ) =
µ

µ+ 1
2
(1− µ)γ

> µ.

Since µ > u
w
, φ(µ) > 2u

2u+(w−u)γ ≥ 2u
u+w

because γ ≤ 1. This implies that if e is chosen,

A is never hired after the second period. The payoff of choosing e in the first period at

state θe thus is (1 − δ)u. However, the payoff of choosing t in the first period at state θe is

(1− δ)(−w) + δu > (1− δ)u since δ > u+w
2u+w

. Therefore, we must have γ = 0. But if γ = 0,

the expected payoff for P is: 1
2
(u − w) < 0. As a result, A will never be hired in the first

period.

However, if µ ≤ u
w
, there exists a sequential equilibrium where the good agent chooses

{0, 1} and P never hires A in the first period. But there also exists another equilibrium

where the good agent chooses {1, 1} and A is hired in the first period.

2.2.3 Bad Reputations: General Result

Now suppose actions in every single period are observable by subsequent short-lived players.

Let V̄ (µ, δ) be the supremum of discounted average Nash equilibrium payoffs for the good

agent. Then Ely and Välimäki (2003) show that:

Theorem 2

lim
δ→1

V̄ (µ, δ) = 0,∀µ.
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2.3 Building Reputations Through Costly Investments

2.3.1 Reputational Capital

Klein and Leffler (1981) argue that, in a free market, sellers who supply goods with poor

performance will lose their reputation and hence future sales. This will deter the provision

of poor performance. Hence, reputation can be viewed as an asset and the seller with higher

reputational capital charges a higher price that Klein and Leffler interpret as a return to this

capital. The value of this capital becomes zero whenever it is commonly believed that the

seller supplies a good with low performance.

There are two different approaches to model reputational capital in the repeated-games

literature. In the interpretative approach, the notion of reputation is used to interpret

an equilibrium strategy profile in repeated games. For example, in the trigger strategy of

the repeated prisoner’s dilemma game, a player’s reputation for cooperation is destroyed if

the player deviates in the past. Reputation establishes a link between past behavior and

expectations of future behavior, and this link is an equilibrium phenomenon, holding in some

equilibria but not in others. However, the introduction of reputation involves no modification

of the basic repeated game and adds nothing to the formal analysis.

The models we have studied so far are usually called the “adverse selection” approach to

model reputations. Reputation in these models is represented as belief about certain “types”.

In order to do this, we should perturb from a game of complete information in which the

players are “normal,” and switch to a game of incomplete information. The idea that a player

has an incentive to build, maintain, or milk his reputation is captured by the incentive that

player has to manipulate the beliefs of other players about his type. The updating of these
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beliefs establishes links between past behavior and expectations of future behavior. We say

“reputations effects” arise if these links give rise to restrictions on equilibrium payoffs or

behavior that do not arise in the underlying game of complete information.

As an asset, reputational capital requires costly investments to build and maintain. Fol-

lowing Mailath and Samuelson (2006) and Mailath and Samuelson (2001), we will investigate

the incentives of making costly investments to build reputations.

2.3.2 Model Setup

There are two players in the stage game. A long-lived firm and a short-lived consumer. In

each period t, the long-lived player chooses an effort level at ∈ {H,L}. The consumer then

receives an idiosyncratic realization of a signal. The signal has two possible values, z̄ and

z. The marginal distribution is π(z̄|ai) = ρi, for i = H,L and 1 > ρH > ρL = 1 − ρH > 0.

The signal z̄ generates a value of 1 to the consumer and the signal z has value 0. There is

incomplete information about the firm’s type. The normal type has the option of choosing

high (with a cost of c) or low effort. But there is a single commitment type who will always

choose low effort. The price is set to be the same as the consumers’ expected payoffs. In

particular, if the firm is thought to be normal with probability µ0, and if the normal firm is

thought to choose high effort with probability α, the the price will be

P (µ0α) = µ0αρH + (1− µ0α)ρL.

In the above setting, the consumer is passive and the key question is whether the firm has

incentive to build reputations given the payoff function P . Obviously, there exist equilibria
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in which the normal firm always exert high effort. For example, if the cost of investment c is

sufficiently small, the following is an equilibrium: “The firm continues to exert high effort as

long as signal z̄ is realized for all the previous periods and the price is µtρH + (1− µt)ρL. If

signal z is realized, the firm immedietely switches to low effort forever and the price is ρL.”

2.3.3 Markov Perfect Equilibrium

An implausible feature of the above equilibrium is the following. Consider two different

histories: z̄ and z̄z̄z. The equilibrium implies that the firm should invest under the first

history but not under the second one. However, the posterior beliefs under these two histories

are both equal to:

µ0ρH
µ0ρH + (1− µ0)ρL

.

Also, using punishment triggered by the signal z causes multiple equilibria. As a result, we

introduce Markov perfect equilibrium to overcome the above issues.

A Markov strategy for the normal firm is a mapping α : [0, 1] → [0, 1], where α(µ0) is

the probability of choosing action H when the posterior is µ0. The posteriors are updated

according to Bayes’ rule:

φ(µ0|z̄) =
[ρHα(µ0) + ρL(1− α(µ0))]µ0

[ρHα(µ0) + ρL(1− α(µ0))]µ0 + ρL(1− µ0)

and

φ(µ0|z) =
[(1− ρH)α(µ0) + (1− ρL)(1− α(µ0))]µ0

[(1− ρH)α(µ0) + (1− ρL)(1− α(µ0))]µ0 + (1− ρL)(1− µ0)
.
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Given any public history H t ∈ Ht = {z̄, z}t and the prior µ0, we can compute the

posteriors φ(µ0|ht). A Markov strategy α will imply strategy σα : H → [0, 1] such that

σα(ht) = α(φ(µ0|ht)).

Definition 1 The strategy α is a Markov perfect equilibrium if σα is maximizing for the

normal firm for any prior µ0.

2.3.4 The Impossibility of Building Reputations

Proposition 8 There is a unique Markov perfect equilibrium in pure strategies. In this

equilibrium, the normal firm exerts low effort with probability one for all µ0.

Proof. The strategy α(µ0) = 0 for all µ0 is clearly an equilibrium. We need to argue that

this is the only pure-strategy Markov perfect equilibrium. Suppose there are other equilibria

with α(µ0) = 1 for some µ0. Fix such an equilibrium and let V0(µ0) denote the value function

of the normal firm. Thus, we have:

V0(µ0) = (1−δ)(p(µ0)−c)+δ(ρH−ρL)(V0(φ(µ0|z̄))−V0(φ(µ0|z)))+δ(ρLV0(φ(µ0|z̄))+(1−ρL)V0(φ(µ0|z))).

Notice that V0 is bounded by ρL and ρH − c. Denote V0(µ0;L) to be the value of a

one-period deviation to choosing low effort and then reverting to the equilibrium strategy of

α. We have:

V0(µ0;L) = (1− δ)p(µ0) + δ(ρLV0(φ(µ0|z̄)) + (1− ρL)V0(φ(µ0|z))).
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α(µ0) = 1 implies that V0(µ0) ≥ V0(µ0;L) and hence:

δ(ρH − ρL)(V0(φ(µ0|z̄))− V0(φ(µ0|z))) ≥ (1− δ)c.

If µ0 is 0 or 1, φ(µ0|z̄) = φ(µ0|z), ensuring α(µ0) = 1 is suboptimal. For µ0 ∈ (0, 1),

first notice that δ(ρH − ρL)(V0(φ(µ0|z̄)) − V0(φ(µ0|z))) ≥ (1 − δ)c implies α(φ(µ0|z̄)) = 1.

Because if α(φ(µ0|z̄)) = 0, we have:

V0(φ(µ0|z̄)) = (1− δ)ρL + δ(ρLV0(φ(µ0|z̄)) + (1− ρL)V0(φ(µ0|z̄))) =⇒ V0(φ(µ0|z̄)) = ρL.

However, V0(φ(µ0|z))) ≥ ρL. This leads to a contradiction.

Denote x = φ(µ0|z̄). α(x) = 1 implies that:

δ(ρH − ρL)(V0(φ(x|z̄))− V0(φ(x|z))) ≥ (1− δ)c.

Notice that φ(x|z) = µ0. Therefore, we get

δ(ρH − ρL)(V0(φ(x|z̄))− V0(µ0)) ≥ (1− δ)c,

where

φ(x|z̄) = µ0ρ
2
H

µ0ρ2H + (1− µ0)ρ2L
.
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Define a sequence {µk} such that µk =
µ0ρ2kH

µ0ρ2kH +(1−µ0)ρ2kL
. Then we have:

δ(ρH − ρL)(V0(µ
1)− V0(µ

0)) ≥ (1− δ)c.

Also, the above inequality implies that α(µ1) = 1. Replace µ0 by µ1 and we have:

δ(ρH − ρL)(V0(µ
2)− V0(µ

1)) ≥ (1− δ)c.

Repeating this process yields:

V0(µ
k) ≥ V0(µ

0) +
(1− δ)kc

δ(ρH − ρL)
,

which gives limk→∞ V0(µ
k) = ∞. But this is impossible since V0 is bounded above by ρH− c.

Therefore, it cannot be that α(µ0) = 1.

The possibility of an inept type potentially provides the normal firm an incentive to exert

high effort and build reputations. However, the normal firm cannot always exert high effort.

Otherwise, the consumers will eventually become almost certain that the firm is normal. As

the posterior of a normal firm approaches to one, the effect of signals on the belief becomes

smaller and smaller. At some point, the normal firm will find it optimal to revert to low

effort. Anticipating this, the firm will exert low effort even earlier, causing the equilibrium to

unravel. The only pure-strategy equilibrium calls for low effort. This result implies that, to

guarantee that building reputations is an equilibrium, some other elements are needed. For

example, we can consider mixed strategy equilibrium or introduce an exogenous probability

of replacement. The role of replacement is to introduce lower and upper bounds on beliefs
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Figure 5: An OLG Economy.

such that k in the above proof will not converge to infinity. Mailath and Samuelson (2001)

show that if there is a small probability of replacement, then there exists a pure strategy

Markov perfect equilibrium where the normal firm always exerts high effort if the cost c is

sufficiently small.

2.4 Markets for Reputations

In this section, we will discuss another way to guarantee reputation building. The idea is

to allow the firms to trade reputations. The normal firms have higher incentives to build

reputations if they anticipate that good reputations can be traded at a higher price. The

model is based on Tadelis (1999).

2.4.1 Model Setup

A two-period OLG economy. At the beginning of period 0, there is a unit mass of “old”

firms, half of whom are good and half of whom are normal. There is also a unit mass of

young firms, again with half being good and half being normal. Each firm is distinguished

by a name.

Good firms provide a service that is successful with probability ρ > 1/2 and a failure

otherwise. A normal firm faces a choice in each period. It can exert high effort, at cost
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c > 0, in which case its output is a success with probability ρ and a failure with probability

1 − ρ. Alternatively, it can exert low effort at no cost, in which case its output is surely a

failure.

A success has a value of 1 to a consumer, and a failure has value zero. Firms sell their

outputs to consumers who cannot distinguish good firms from normal ones and cannot con-

dition their price on whether the service will be a success or failure, and who are sufficiently

numerous to bid prices for the firms’ products up to their expected value.

At the end of period 0, all old firms disappear to be replaced by a generation of new

firms. Firms that were previously new become old. These continuing firms have the option

of retaining their name or abandoning it to either invent a new one with zero cost or buy a

name, at the market price. Each new firm can invent a new name or buy a name. Consumers

don’t observe whether the name is owned by a continuing firm or a new firm. Consumers

in the second period observe the name of each firm. For each old name, consumers observe

whether the name was associated with a success or a failure in the previous period. However,

they do not observe whether the name is owned by a continuing firm or a new firm.

2.4.2 Markets for Names

In this model, names are intrinsically worthless. However, the interperiod market for names

may be active in some equilibria.

Consider a class of equilibria: every continuing firm experiencing a failure in period 0

abandons its name, every young firm whose service was successful retains its name, and no

name carrying a failure are purchased. We can generate a continuum of equilibria and every

equilibrium has the following feature:
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Proposition 9 Names carrying a success are traded in any equilibrium.

Proof. Notice that in period 1, no normal firm will exert effort and only the good firms will

exert effort. If no names are traded in equilibrium, then all names associated with old firms

are abandoned and only successful young firms retain their names. If normal young firms

exert low effort, then Pr(G|S) = 1. In period 1, the consumers are willing to pay a price ρ

for the firms with successful names but for the new names, the price is strictly less than ρ.

Therefore, a new firm is willing to buy successful names from the old firms, which leads to

a contradiction. If a fraction x of normal young firms exert high effort, then in period, the

consumers are willing to pay a price ps =
ρ

1+x
for the firms with successful names but for the

new names, the price is pn =
ρ(1− 1

2
ρ)

2− 1
2
(1+x)ρ

. ps > pn for x < 1. As long as ps > pn, a new firm

is willing to buy successful names from the old firms, which leads to a contradiction. The

last thing is to rule out x = 1 as a “no-name-trading” equilibrium. If not, then a normal

young firm has incentive to deviate to low effort. This deviation saves the cost of high effort

without affecting the payoffs. Thus, x = 1 is also not an equilibrium. Therefore, we can

conclude that names carrying a success must be traded.

We seek to characterize equilibria in which all normal firms exert high effort in period 0. In

such a configuration, there are measure ρ successful names in the names market associated

with old firms (we assume the continuing firms will retain their successful names). We

examine an equilibrium in which all of the ρ successful names are sold and θ is the fraction

of these names purchased by good firms. By Bayes’ updating,

Pr(G|S) =
1
2
ρ+ θρ

2ρ
and Pr(G|N) =

1− 1
2
ρ− θρ

2− 2ρ
.
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Therefore, we have

ps = ρ
1 + 2θ

4
and pn = ρ

2− ρ− 2ρθ

4− 4ρ
.

The price of a name is then

ps − pn = ρ
2θ − 1

4− 4ρ
.

For c sufficiently small (i.e., there exists min{1, 2−ρ
2ρ

} ≥ θ > 1
2
, such that c ≤ ρ(ps − pn)

1),

there exists equilibria in which high effort is exerted for every normal firm in period 0.

Multiple equilibria exist since for c sufficiently small, there may be a continuum of θ satisfying

c ≤ ρ(ps − pn).

The market for names plays an important role in creating the incentives for normal firms

to exert high effort. Suppose that there was no market for names. It is then clear that old

normal firms will not exert high effort in period 0, because there is no future reward for doing

so. Also we have shown that there cannot be an equilibrium for all young normal firms to

exert high effort in period 0. However, with such a market for names, it is possible that all

normal firms exert high effort in period 0.
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