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Abstract
This paper studies robust Bayesian persuasion of a privately informed receiver in a
binary environment, where an ambiguity-averse sender with amaxmin expected utility
function has limited knowledge about the receiver’s private information source. We
develop a novel method to solve the sender’s information design problem. Our main
result shows that the sender’s optimal information structure can be found within the
class of linear-contingent-payoff information structures. We also fully characterize
the sender’s optimal linear-contingent-payoff information structure and analyze the
impact of ambiguity on the sender’s payoff.

Keywords Bayesian persuasion · Ambiguity aversion · Maxmin utility · Private
information · Robustness

JEL Classification D81 · D82 · D83

1 Introduction

Imagine a sender (he) who can provide some information to influence the decision
making of a rational Bayesian receiver (she) who has a private source of information.
The sender has only limited knowledge about what the receiver privately knows and
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wants to design a persuasion rule that is robust to this uncertainty. Can the sender gain
from persuasion? What is the optimal way to persuade?

The above situation is relevant in many economic settings. For example, when
a bond rating agency chooses what information to disclose to investors about bond
issuers, the agency knows that investors may also have access to private information
from other channels, such as newspapers and the Internet. The agency’s knowledge
about the investors’ private information is limited in the sense that the agencyknows the
possible channels from which the private information is generated, but does not know
from which channel a particular investor obtains her information. In another example,
when a school chooses what information to disclose on transcripts to prospective
employers about the ability of its students, it knows that employers may also obtain
private information from the students’ extracurricular activities. The school knows
the set of all possible extracurricular activities, but does not know which particular
extracurricular activity is observed by an employer.

Our model is built on Kamenica and Gentzkow (2011). There is a sender who
designs a disclosure rule to convey information about the state of the world, and a
receiver who chooses an action that affects her and the sender’s payoffs. We focus
on a binary environment where there are two states and two actions for the receiver.
The receiver wants to match her action with the state, while the sender strictly prefers
one action in all states. The receiver takes the sender’s preferred action only if she
believes the matching state is more likely to occur. Initially, the sender and receiver
hold common prior belief π ∈ (0, 1) about this state.

The receiver receives private information from her private source, about which the
sender has limited knowledge. We model the receiver’s private information source as
a distribution of her private belief. It is common knowledge that the receiver’s private
belief is bounded between α < π < β and this is the only knowledge that the sender
has about the receiver’s private information source. Thus, the sender thinks that every
private belief distribution over [α, β] whose mean is π is possible. For instance, a
special case is α = 0 and β = 1. This is the situation where the sender has no
knowledge at all about the receiver’s private belief distribution.

A sender’s information disclosure rule is an information structure. We investigate
how an ambiguity-averse sender with maxmin expected utility optimally designs his
robust information structure. The maxmin expected utility criterion, which is perhaps
themost commonly adoptedmodel in previous studies involving ambiguity and robust-
ness concerns, simply requires that the sender evaluates each information structure in
terms of theworst-case expected payoff across the receiver’s possible private belief dis-
tributions.1 The information structure that maximizes this worst-case expected payoff
is the sender’s optimal information structure.

Each of the sender’s information structures defines his expected payoff as a function
of the receiver’s private belief over [α, β]. We call this function the sender’s contingent
payoff function from this information structure. Because the sender thinks that the
receiver’s private belief distribution can be any distribution over [α, β] with mean
π , the sender’s worst-case payoff function from each information structure is then
the largest convex function below his contingent payoff function over [α, β]. The
1 See Gilboa and Schmeidler (1989) for an axiomatic representation of this preference.
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sender’s worst-case expected payoff from this information structure is just the value
of this worst-case payoff function at the prior π . This observation reflects the fact
that it is the worst “average performance”of each information structure, rather than
its performance at a single private belief, that the sender cares about in the face of
ambiguity.

Our main result shows that the sender’s optimal information structure is a linear-
contingent-payoff information structure. The contingent payoff function of such an
information structure takes the form of max{0, �} over [α, β] for some linear function
�.2 In establishing this main result, we develop a novel method for solving the sender’s
robust information design problem. This method combines convexification and lin-
ear approximation. Because the sender’s contingent payoff function under a general
information structure can be quite arbitrary, its convexification—theworst-case payoff
function—is almost impossible to analyze directly. By approximating each worst-case
payoff function by linear functions, we effectively transform the comparison of worst-
case payoff functions into amuchmore tractable problem: comparing linear functions.
It turns out that the comparison of these linear functions can be accomplished by esti-
mating differential inequalities.

We further characterize the sender’s optimal linear-contingent-payoff information
structures for different values of α, β and prior π ∈ [α, β]. For all but one cut-off
prior π̂ ∈ (α, β), the sender has a unique optimal linear-contingent-payoff information
structure. More interestingly, the optimal information structures for different priors
reflect a fundamental trade-off in the sender’s optimization problem. For prior π < π̂ ,
the optimal information structure is the one that maximizes the sender’s contingent
payoff at private belief α. This is because the receiver’s private beliefs are more likely
to be close toα for low priorπ , and this particular information structure just guarantees
himself high contingent payoffs for all private beliefs close to α. In contrast, for prior
π > π̂ , the optimal information structure delivers low (possibly the lowest) contingent
payoffs for private beliefs close to α, but higher contingent payoffs for private beliefs
close to β. This is because the receiver’s private beliefs are more likely to be close to
β for high prior π . Thus, the sender is willing to sacrifice contingent payoffs at low
private beliefs in exchange for higher contingent payoffs at high private beliefs.

Even in this simple environment with binary states and actions, we find that some
of the optimal information structures involve infinitely many signals. These infinitely
many signals are specially distributed to guarantee the linear structure of its contingent
payoff function. This is an example where the “revelation principle” (Proposition 1
in Kamenica and Gentzkow 2011) fails. In the current setting, restricting attention to
recommendation systems where the signals are interpreted as recommending actions
does entail loss of generality. This is because the receiver with different private beliefs
will have different posteriors for the same recommendation.

Based on the characterization, we also analyze how the change of ambiguity affects
the sender’s welfare. Specifically, we ask whether more ambiguity always make the
sender strictly worse off. Interestingly, it depends on whether the ambiguity is too
biased or not. If α is far away from π compared to β from π , then a decrease in α will

2 Here, zero is the lowest possible payoff to the sender.

123



912 J. Hu, X. Weng

not harm the sender. Similarly, if β is far away from π compared to α from π , then
an increase in β will not make the sender strictly worse off either.

1.1 Related literature

Our Bayesian persuasion model is a variation of that of Kamenica and Gentzkow
(2011), with the new ingredient that the receiver is privately informed and the sender
has only limited knowledge about the receiver’s private information source. We study
how a sender optimally reveals information that is robust to the receiver’s private infor-
mation. Bayesian persuasion of a privately informed receiver has been studied in Rayo
and Segal (2010), Kamenica andGentzkow (2011), Guo and Shmaya (2019), Kolotilin
et al. (2017) and Kolotilin (2018). These papers all assume that the distribution of the
receiver’s private information is commonknowledge, as in the usualmechanismdesign
literature, but we consider the environment in which the sender thinks many distribu-
tions are possible. While Rayo and Segal (2010), Guo and Shmaya (2019), Kolotilin
et al. (2017) and Kolotilin (2018) model the receiver’s private information as her pri-
vate preference and the latter three papers also consider private persuasion (so named
by Kolotilin et al. 2017), our model is closest to Kamenica and Gentzkow (2011),
Section VI.A. We model the receiver’s private information as her private belief, and
focus on public persuasion in which the sender designs a single information disclo-
sure rule for all receiver types. Because the sender in our model is uncertain about
the receiver’s private information source, he cannot simply form an expectation of the
receiver’s private beliefs by “integrating over the receiver’s private signal,” as sug-
gested in Kamenica and Gentzkow (2011), Section VI.A. Consequently, the standard
concavification approach of Kamenica and Gentzkow (2011) does not apply in our
model. Instead, our analysis relies on the opposite of concavification, i.e., convexifi-
cation, to derive our characterizations (see Lemma 1).

Because our model can be equivalently interpreted as a zero-sum game between
the sender and nature, our paper is also related to Gentzkow and Kamenica (2017a)
who study multiple sender persuasion problems with rich signal spaces. The major
difference between their paper and ours is that nature’s signal space is restricted by the
sender’s ambiguity and we do not allow arbitrary correlation between the sender and
nature’s signals. It is only when the sender has full ambiguity that our model degener-
ates to that in Gentzkow and Kamenica (2017a) because, in this case, nature’s signal
space is unrestricted. In other cases, our analysis can be considered as an extension of
theirs to one-sided restricted signal space.3

More recently, Kosterina (2018) studies a robust persuasion problem that is similar
to ours. In her model, the sender and receiver have different priors. The sender does
not precisely know the receiver’s prior, but thinks that the receiver’s prior puts at least
some exogenous given mass on states higher than or equal to a certain cut-off. One
important difference between her paper and ours is that the receiver and the sender
hold a common prior about the states in our model. At the interim stage, the sender

3 A few recent papers also consider the case of multiple information designers in different environments.
For example, Albrecht (2017), Au and Kawai (2020, 2019), Gentzkow and Kamenica (2017b), Li and
Norman (2018) and Koessler et al. (2018).

123



Robust persuasion of a privately informed receiver 913

and the receiver may have different beliefs just because the receiver privately received
additional information. The sender rationally takes this into account, as Kamenica and
Gentzkow (2011) Section VI.A does. As a result, the sender’s optimal information
structure is independent of the sender’s prior in Kosterina (2018), whereas the sender’s
optimal information structure in our model critically depends on the common prior.

Finally, our paper is also related to the growing literature on robust mechanism
design under ambiguity aversion. The literature has studied various contexts, such as
auction design, bilateral trade, exchange economy, monopoly pricing, and moral haz-
ard.4 To the best of our knowledge, our paper is the first to investigate robust Bayesian
persuasion of a privately informed receiver.5 Moreover, in the previous literature, the
principal is completely uncertain about the distributions or knows only somemoments
of the distributions (e.g., Carrasco et al. 2018). In our setup, the principal (the sender)
not only knows the mean of the distributions, but also may have further knowledge
about the support of the distributions. We believe that the general method developed
in this paper can also be applied to study the robust Bayesian persuasion of a privately
informed receiver in other frameworks, such as those in Rayo and Segal (2010) and
Kolotilin et al. (2017), and other robust mechanism design issues in similar contexts.

2 Model

2.1 Basic setup

Suppose that there are two states of the world, ω = 0 and ω = 1. There are two
players: a sender and a receiver. At the beginning of the game, the sender and receiver
share a common prior π ∈ (0, 1) on state ω = 1. The sender designs information and
the receiver chooses one of the two actions a = 0 and a = 1. The receiver’s ex post
payoff function is given by u(a, ω) = 1 if a = ω and u(a, ω) = 0 if a �= ω. That
is, the receiver earns an ex post payoff 1 if her action matches the underlying state;
otherwise she gets 0. Because there are only two states and two actions, assuming that
the receiver’s ex post payoff is 0 when she chooses the wrong action entails no loss
of generality. The assumption that the receiver’s payoffs are the same in both states
when she chooses the correct action is made purely for ease of exposition. The method

4 An incomplete list of these studies includes Bergemann and Schlag (2008, 2011) and Carrasco et al.
(2018), who studymonopoly pricingwhen themonopolist only has limited knowledge about the distribution
of the buyer’s valuation; Garrett (2014) analyzes a model of cost-based procurement where the seller is
uncertain about the agent’s effort cost function; Carroll (2015) considers a principal-agent model in which
the principal is uncertain about what the agent can and cannot do; Bose et al. (2006), Bodoh-Creed (2012)
and Bose and Renou (2014) investigate auction design problems in which each bidder is uncertain about the
other bidders’ valuation distributions; Wolitzky (2016) studies efficiency in a bilateral trade model in which
the seller and buyer know only the mean of each other’s valuations; and de Castro et al. (2011, 2017a, b) and
de Castro and Yannelis (2018) study implementation problem in asymmetric information economy where
the agents have multiple priors about the states. More recently, Bergemann et al. (2016) and Du (2018)
study a robust common value auction design in which the seller is uncertain about the bidders’ information
structures.
5 Following Bose and Renou (2014), Beauchẽne et al. (2019) consider ambiguous persuasion where the
sender can send a signal with multiple likelihood distributions. But our model does not allow for this
possibility.
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we develop in this paper can be extended to the case where the receiver gets different
payoffs in different states when choosing the correct action. The receiver’s optimal
action when her posterior belief about state ω = 1 is q is thus given by a[q] = 0
if q < 1/2 and a[q] = 1 if q ≥ 1/2. The sender, by contrast, always prefers the
receiver taking action a = 1, regardless of the underlying states. More specifically,
the sender’s payoff function is v(a) = 0 if a = 0 and v(a) = 1/2 if a = 1. The value
1/2 is inessential, as our analysis can be applied to any strictly positive v(1). We take
v(1) = 1/2 rather than other values just to simplify the exposition.

2.2 Modeling the sender’s ambiguity

The receiver receives a private signal about the underlying state from her private
information source. Upon observing such a signal, the receiver then updates her belief
from the common prior π . From an ex ante point of view, this information source leads
to a distribution μ of the receiver’s private belief. If the sender knew the receiver’s
information source, he would correctly expect μ as the distribution of the receiver’s
private belief, as discussed in Section VI.A in Kamenica and Gentzkow (2011).

However, we assume that when designing information, the sender neither observes
the receiver’s private signal nor is aware of her private information source. Instead, the
only knowledge that the sender has is that the receiver’s private belief is contained in
a certain range [α, β] where 0 ≤ α ≤ π ≤ β ≤ 1 no matter what private information
source the receiver actually has andwhat signal is realized. To avoid the trivial case, we
assume α < 1/2 throughout the paper. The range [α, β] then represents the ambiguity
faced by the sender. An equivalent interpretation of this ambiguity is that the sender is
sure that the receiver’s information source has a certain bound on the likelihood ratios,
although he has no idea what precisely it is. Moreover, we assume that the sender’s
knowledge is correct in the sense that all the receiver’s possible private beliefs are
indeed contained in [α, β]. This assumption rules out situations where the sender
completely misspecifies the receiver’s private information structure.6

As is a common practice in the Bayesian persuasion literature due to Proposition
1 in Kamenica and Gentzkow (2011), any information source that leads to all the
receiver’s private beliefs being contained in the range [α, β] can be identified as the
set of distributions of the receiver’s private belief whose mean is the common prior π

and whose support is contained in [α, β]. Formally, let

M(π; [α, β]) ≡
{
probability distribution μ over [α, β]

∣∣∣∣
∫

[α,β]
pμ(dp) = π

}

be the set of all suchprivate belief distributions.The sender believes that the distribution
of the receiver’s private belief is some μ ∈ M(π; [α, β]).

6 See, for example, Esponda and Pouzo (2016a, b) for a recent discussion of solution concepts under model
misspecification.
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2.3 Sender’s information structure

Aside from the receiver’s private information, the sender can design an experiment to
supply supplemental information to the receiver. We assume that the receiver’s private
information and the sender’s information are conditionally (on states) independent (as
in Kamenica and Gentzkow 2011; Bergemann et al. 2018).

Deviating from the way we model the receiver’s private information, we directly
model the sender’s information design problem as choosing an information structure.
Compared to the approach of choosing a posterior belief distribution with mean π , this
direct approach has two advantages. First, the receiver, after observing the sender’s
signal, updates her belief from her private belief that may be different from the com-
mon prior π . If we model the sender’s information design problem as choosing a
posterior belief distribution, the receiver’s true posterior belief distribution will be
different from the one designed by the sender. It is not convenient to transform the
sender’s design into the receiver’s true distribution.7 Second, information structures
only involve conditional distributions of signals, and thus are “prior free.” This feature
makes it easier to evaluate the performance of a given information structure for differ-
ent priors. As a result, it enables us to solve the sender’s information design problem
simultaneously for all π ∈ (α, β), as we will see in the next section. It also facilitates
the comparison of the optimal information structures for different priors.

Formally, an information structure consists of a signal space and two probability
measures over the signal space governing the conditional distribution of signals in
each state ω ∈ {0, 1}. Theorem 3 in Blackwell (1951) showed that every information
structure has a canonical representation.8 The signal space of such a canonical rep-
resentation is simply the interval [0, 1]. The two conditional distributions of signals
are identified by a c.d.f. F over [0, 1] with mean 1/2. More specifically, the signal
distribution in state ω = 0 is given by

F0(s) =
∫

[0,s]
2s̃dF(s̃), ∀s ∈ [0, 1], (1)

and that in state ω = 1 is

F1(s) =
∫

[0,s]
2(1 − s̃)dF(s̃), ∀s ∈ [0, 1]. (2)

Hence, from the sender’s point of view, choosing an information structure, i.e., a pair
of signal distributions, is equivalent to choosing such a single c.d.f. F . With slight
abuse of terminology, we refer to such an F as the sender’s information structure.
Let F ≡ {

c.d.f. F over [0, 1] ∣∣ ∫[0,1] sdF(s) = 1/2
}
be the set of all the sender’s

information structures.

7 Proposition 1 in Alonso and Câmara (2016) derives a formula for this transformation.
8 It was called a standard experiment in Blackwell (1951).
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Given any information structure F ∈ F , if the receiver’s private belief about state
ω = 1 is p, her posterior belief after observing signal s ∈ [0, 1] is9,10

q(p, s) = p(1 − s)

p(1 − s) + (1 − p)s
. (3)

From (3), the receiver’s posterior belief is decreasing in signal. In particular, signal
s = 1 perfectly reveals state ω = 0, while s = 0 reveals state ω = 1. Because
q(p, s) ≥ 1/2 if and only if s ≤ p, the receiver will choose the sender’s preferred
action if and only if she receives a signal below her private belief.

For one example, the c.d.f. F that places all the mass at the atom 1/2 is the com-
pletely uninformative information structure. In both states, it releases signal 1/2 for
sure. For another example, the c.d.f. F that places half of the probability at the atom
0 and the other half of the probability at 1 is the completely informative information
structure. It releases signal 1 for sure in state ω = 0 and releases signal 0 for sure in
state ω = 1.

For a more relevant example, suppose the common prior is π ∈ (0, 1/2). Consider
the following c.d.f.

F(s) =

⎧⎪⎨
⎪⎩
0, if s ∈ [0, π),

1
2(1−π)

, if s ∈ [π, 1),

1, if s = 1.

(4)

Because its mean is 1/2, it is an information structure. From (1) and (2), the associated
signal distributions are

F0(s) =

⎧⎪⎨
⎪⎩
0, if s ∈ [0, π),

π
1−π

, if s ∈ [π, 1),

1, if s = 1,

and F1(s) =
{
0, if s ∈ [0, π),

1, if s ∈ [π, 1].

Clearly, this information structure contains two signals, π and 1. In state ω = 0, it
releases signal s = π with probability π/(1 − π) and signal s = 1 with probability
1−π/(1−π). In stateω = 1, it releases signal s = π for sure. If the receiver’s private
belief is π , her posterior belief about state ω = 1 after signal π is q(π, π) = 1/2
and that after signal 1 is q(π, 1) = 0. Kamenica and Gentzkow (2011) show that this
information structure would be the sender’s unique optimal information structure if
the receiver had no private information (hence the sender faces no ambiguity). This
kind of information structure plays an important role in the following analysis. We
thus refer to F as the KG solution for belief π .

9 This is because the “probability density” of F0, i.e., its Radon–Nikodym derivative with respect to F , is
2s from (1), and that of F1 is 2(1 − s) from (2). Strictly speaking, (3) holds F-almost surely.
10 From (3), we see that q(1/2, s) = 1 − s for all s ∈ [0, 1]. Equivalently, the posterior belief about
state ω = 0 is 1 − q(1/2, s) = s. Because s is distributed according to F , an information structure F
can be equivalently interpreted as a distribution of the posterior belief for state ω = 0, given prior 1/2.
The requirement that

∫
sdF(s) = 1/2 is then the Bayes plausibility condition in Kamenica and Gentzkow

(2011).
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2.4 Sender’s payoff and information design problem

Suppose the sender designs information F ∈ F and the receiver’s private belief is p. If
the receiver receives a signal s > p from F , then her posterior belief is q(p, s) < 1/2.
In this case, the receiver will choose a = 0 and the sender’s payoff is v(0) = 0. If,
instead, the receiver receives a signal s ≤ p, her posterior belief is q(p, s) ≥ 1/2. In
this case, the receiver will choose a = 1 and the sender’s payoff is v(1) = 1/2. Thus,
the sender’s expected payoff from F is Pr(s ≤ p)/2. Because the sender and receiver
hold a common prior, the sender also has belief p conditional on the event that the
receiver’s private belief is p. Hence, the sender believes that the signals are distributed
according to (1− p)F0+ pF1, which implies Pr(s ≤ p) = (1− p)F0(p)+ pF1(p).11

Therefore, we can write the sender’s expected payoff as

φF (p) ≡ 1

2
[(1 − p)F0(p) + pF1(p)]

=
∫

[0,p]
[(1 − p)s + p(1 − s)]dF(s),

(5)

where the second equality comes from (1) and (2). We call the function φF : [0, 1] →
R the sender’s contingent payoff function from information structure F . It will be the
central focus of our analysis.12

If the sender knew the receiver’s private information structureμ, his ex ante expected
payoff from F would be

∫
[α,β]

φF (p)μ(dp).

However, the receiver’s information structure is private and the sender is uncertain
about it. The sender knows only that the receiver’s private information structure is
one of those in M([α, β], π). Following the standardmaxmin expected utility function
assumption in the ambiguity aversion literature (e.g., Gilboa and Schmeidler 1989;
Garrett 2014; Carroll 2015), we assume that the sender evaluates an information struc-
ture F ∈ F in terms of its worst-case expected payoff. When the sender designs F ,
it is the worst-case expected payoff that he seeks to maximize. Formally, for each
F ∈ F , let

V F (π; [α, β]) ≡ inf
μ∈M(π;[α,β])

∫
[α,β]

φF (p)μ(dp). (6)

be the sender’s worst-case expected payoff if he designs information structure F . Then
the sender’s robust information design problem can be succinctly written as

11 This is the key difference between our setting of private information and one of noncommon priors.
At the interim stage, the sender and receiver may have different beliefs. But this occurs only because the
receiver has received her private signal about the underlying states. When the sender forms his belief about
the signal distribution, given the receiver’s private belief, he should take this fact into account. If, instead,
the two agents have non-common priors and intrinsically differ in their beliefs, then the sender’s belief
about the signal distribution would be πF0 + (1 − π)F1.
12 The KG solution for belief π ∈ (0, 1/2) in (4) is the information structure that solves maxF∈F φF (π).
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F
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Fig. 1 Convexification on different domains

V (π; [α, β]) ≡ max
F∈F

V F (π; [α, β]). (7)

2.5 Convexification

For α < β and the sender’s information structure F ∈ F , let co[α,β]φF : [α, β] → R

be the convexification of φF over [α, β]. It is the largest convex function below φF

over the interval [α, β]. Formally,

co[α,β]φF (p) ≡ sup
convex f :[α,β]→R

f≤φF over [α,β]

f (p), ∀p ∈ [α, β].

Figure1 provides an illustration of convexification. It is worth emphasizing that the
value of the convexification in general depends on its domain [α, β]. Different domains
[α, β] will lead to different values of convexification even for the same sender’s infor-
mation structure F . For instance, the dashed blue curve in Fig. 1 is the convexification
over the whole domain [0, 1], while the solid blue line segment is the convexification
over the interval [α, β]. Obviously, these two are quite different.

Applying the concavification result in Kamenica and Gentzkow (2011) (Corollary
2) to theminimization problem in (6), the following lemma provides a characterization
of the sender’s worst-case expected payoff from an information structure F ∈ F using
the notion of convexification.

Lemma 1 For any α < β and information structure F ∈ F ,

V F (π; [α, β]) = co[α,β]φF (π), ∀π ∈ (α, β).
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Therefore,

V (π; [α, β]) = max
F∈F

co[α,β]φF (π), ∀π ∈ (α, β).

Intuitively speaking, the sender’s worst-case payoff from an information structure
F is the worst average payoff from F . Thus, to maximize his worst-case payoff, the
sender should care about the average performance of an information structure, instead
of its performance at a particular private belief.

3 Sender’s optimal information structure

In this section, we analyze the sender’s optimal information structure. We divide the
whole analysis into two cases: β = 1 and β < 1. Although β = 1 is the limiting case
of β < 1, we treat it separately because it is simple.

3.1 ˇ = 1

Consider the KG solution for belief α13:

Fα,α(s) =

⎧⎪⎨
⎪⎩
0, if s ∈ [0, α),

1
2(1−α)

, if s ∈ [α, 1),

1, if s = 1.

(8)

Recall that Fα,α uniquely maximizes φF (α) over all F ∈ F . The sender’s contingent
payoff function under Fα,α can be calculated from (5),

φFα,α

(p) = 1 − 2α

2(1 − α)
(p − α) + α, ∀p ∈ [α, 1].

Most importantly, this contingent payoff function is linear over [α, 1]. Hence, by
Lemma 1, the sender’s worst-case payoff for any prior π ∈ (α, 1) is just φFα,α

(π).
Consider a prior π ∈ (α, 1) and any information structure F ∈ F other than Fα,α .

If the receiver’s private belief happens to be distributed according to λ◦α+ (1−λ)◦1
for λ ∈ (0, 1) that satisfies λα + (1 − λ) = π , then the sender’s payoff from F is
λφF (α)+ (1−λ)φF (1). Therefore, the sender’sworst-case payoff co[α,1]φF (π) is no
higher than λφF (α)+ (1−λ)φF (1). At private belief α, we have φF (α) < φFα,α

(α).
At private belief 1, φF (1) = φFα,α

(1) because the sender’s information structure
becomes irrelevant once the receiver has known the state ω = 1. Therefore,

co[α,1]φF (π) < λφFα,α

(α) + (1 − λ)φFα,α

(1) = φFα,α

(π) = co[a,1]φFα,α

(π),

13 We write double superscripts (α, α) in order to be consistent with our notation in the next subsection.
See, for example, Lemma 2.
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where both equalities come from the fact that the contingent payoff function φFα,α
is

linear over [α, 1]. This observation leads to the following proposition, which charac-
terizes the sender’s optimal information structure when β = 1.

Proposition 1 Suppose β = 1. For every π ∈ (α, β), Fα,α is the unique optimal
information structure for the sender.

A special case is α = 0. This represents the sender’s full uncertainty. He has no
knowledge at all about the receiver’s private information structure and simply thinks
every distribution of private beliefs with mean π is possible. In this case, the optimal
information F0,0 corresponds to full information disclosure because only s = 0 and
s = 1 will be generated:

F0,0(s) =
{

1
2 , if s ∈ [0, 1),
1, if s = 1.

This is the special case of the full revelation result in Gentzkow and Kamenica
(2017a) for exactly two players, the sender and nature, with zero sum payoffs. Accord-
ing to the same logic as in Gentzkow and Kamenica (2017a), the optimality of full
information disclosure holds in general environments with multiple states and actions,
and arbitrary sender and receiver payoff specifications.

3.2 ˇ < 1

3.2.1 Main result

The analysis of the optimal information structure for β < 1 becomes much more
difficult than that for β = 1. In this subsection, we present our main result. The next
two subsections are devoted to explaining the ideas behind it in greater details.

As we have seen, one of the reasons that Fα,α is sender optimal is that its contingent
payoff function is linear. The following definition generalizes this property to a larger
class of information structures.

Definition 1 An information structure F ∈ F is a linear-contingent-payoff informa-
tion structure (LCPIS) over [α, β] if φF (p) = max{0, �(p)} over [α, β] for some
strictly increasing linear function �.

For example, the KG solution Fα,α is an LCPIS over [α, β] for any β > α. Because
the contingent payoff function of an LCPIS is convex by definition, the worst-case
payoff function co[α,β]φF coincides with φF for every LCPIS F by Lemma 1.

Our main result can be succinctly stated as follows. Recall that V (π; [α, β]) is the
sender’s optimal value when the prior is π ∈ (α, β).

Proposition 2 (Main result) For any π ∈ (α, β),

V (π; [α, β]) =max
F∈F

φF (π)

s.t. F is an LCPIS over [α, β].
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Fig. 2 When β < 1, Fα,α is not optimal for prior π close to β

In words, Proposition 2 states that for any prior π ∈ (α, β), we can always find the
sender’s optimal information structure by looking at only LCPIS’s. The proof of this
result is very involved. In a nutshell, the whole proof can be divided into two major
steps, which correspond to two important properties of the class of LCPIS’s: (1) the
richness of the class of LCPIS’s and (2) the optimality of the LCPIS’s. The next two
subsections explain these two properties respectively.

3.2.2 Richness

As mentioned above, the KG solution for belief α, Fα,α , is an LCPIS. But if it were
the only LCPIS, then Proposition 2 would not hold when β < 1. To see this, consider
the KG solution for some belief x ∈ (α,min{β, 1/2}), say F . The blue curve in
Fig. 2 is its contingent payoff function and the dashed red curve is the corresponding
worst-case payoff function. Because φF (β) > φFα,α

(β) when β < 1, we see in Fig. 2
that co[α,β]φF exceeds φFα,α

for priors sufficiently close to β. Thus, Fα,α cannot be
optimal for those priors.

This example points out a trade-off faced by the sender when β < 1. Some infor-
mation structures lead to higher contingent payoffs for private beliefs close to α, e.g.,
Fα,α , while others lead to higher contingent payoffs for private beliefs close to β,
e.g., F in Fig. 2. When the prior π is close to α, the sender should care more about
his contingent payoffs at private beliefs close to α, because this is the area where the
receiver’s private belief is most likely to occur. In contrast, when the prior π is close
to β, the sender should care more about his contingent payoffs at high private beliefs.
Note that in the previous analysis of the case β = 1, this trade-off is absent because
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922 J. Hu, X. Weng

φF (1) is a constant across all F ∈ F . This is the major reason why the analysis for
β = 1 is much easier than that for β < 1.

To deal with this trade-off, we need more LCPIS’s than just Fα,α . In general, if F
is an LCPIS, then φF over [α, β] takes one of the following two forms, depending on
the value of φF (α). If φF (α) > 0, then φF is similar to φFα,α

and it can be written as

φF (p) = a(p − x) + b, ∀p ∈ [α, β],

where x = α, b ∈ (0, α], and some a > 0.14 If φF (α) = 0, then it takes the form

φF (p) =
{
0 if p ∈ [α, x],
a(p − x) + b if p ∈ (x, β],

for some x ∈ [α, β), b = 0, and some a > 0. Hence, if F is an LCPIS, its contingent
payoff function is characterized by an initial point (x, b) ∈ {(α, b)|0 < b ≤ α} ∪
{(x, 0)|α ≤ x < β} and a slope a > 0. In this case, with a slight abuse of terminology,
we say that this F has initial point (x, b) and slope a.

For the same initial point, there are potentially many LCPIS’s. These LCPIS’s
differ only in their slopes. Among these LCIPS’s, if an LCPIS is the sender’s optimal
information structure for some prior, it must have the largest slope. This observation
leads to the following definition.

Definition 2 An LCPIS F with initial point (x, b) and slope a is dominant if there is
no LCPIS F ′ that has the same initial point (x, b) but larger slope a′ > a.

The KG solution for belief α, Fα,α , is trivially a dominant LCPIS for any β, since
it is the only LCPIS with initial point (α, α). The following lemma shows that we can
find the dominant LCPIS for not only initial point (α, α), but a much richer set of
initial points.

Lemma 2 (Richness)

(i) Suppose β ≤ 1/2. For every (x, b) in

A(α, β) ≡ {(α, b) | 0 < b ≤ α}
⋃

{(x, 0) | α ≤ x < β},

there exists a unique dominant LCPIS Fx,b with initial point (x, b).
(ii) Suppose β > 1/2 and α < 1 − β. For every (x, b) in

A(α, β) ≡ {(α, b) | 0 < b ≤ α}
⋃

{(x, 0) | α ≤ x ≤ 1 − β},

there exists a unique dominant LCPIS Fx,b with initial point (x, b). Moreover,
φF1−β,0

(β) = 1/2.

14 Because φFα,α
(α) = α, b = φF (α) ≤ φFα,α

(α) = α.
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(iii) Suppose β > 1/2 and α ≥ 1 − β. There exists b̂ ∈ [0, α) such that for every
(x, b) in

A(α, β) ≡ {(α, b) | b̂ ≤ b ≤ α},

there is a unique dominant LCPIS Fα,b with initial point (α, b). Moreover,

φFα,b̂
(β) = 1/2.

Some remarks are in order. First, in short, Lemma 2 identifies a set A(α, β) of initial
points at each of which the dominant LCPIS exists. The statement is divided into three
parts that correspond to three different cases of the value of β. The three graphs
in Fig. 3 illustrate these three cases respectively. In each graph, the thick gray curve
represents the corresponding set A(α, β). Second, the statement thatφF1−β,0

(β) = 1/2
in part (ii) simply claims that F1−β,0 is a KG solution for belief β: it maximizes the
sender’s expected payoff when the common prior is β and the receiver has no private

information.15 See φF1−β,0
in Fig. 3b. Similarly, the statement that φFα,b̂

(β) = 1/2

in part (iii) also means that Fα,b̂ is a KG solution for belief β. See φFα,b̂
in Fig. 3c.

Third, the dominant LCPIS’s in this lemma in general depend on the value of β. We
suppress β from the notation Fx,b just for expositional ease.16

Figure4 illustrates a typical dominant LCPIS with initial point (x, 0). Figure4a
depicts Fx,0 itself and Fig. 4b draws the graphs of its corresponding signal distribu-
tions, Fx,0

0 and Fx,0
1 .17 There are two important features. First, unlike the KG solution

for a belief less than 1/2, which contains only two signals, Fx,0 involves infinitely
many signals. In particular, the continuum of signals in [x, β] are specially distributed
to guarantee that φFx,0

is an LCPIS: φFx,0
is linear over [x, β]. Second, the only signal

bigger than β is the atom s = 1, which perfectly reveals state ω = 0. In other words,
the receiver does not choose the sender’s preferred action at private belief β only if
she observes s = 1. This feature is to guarantee that Fx,0 is dominant. It minimizes
the probability of the receiver not choosing the sender’s preferred action.

When β > 1/2 and α < 1 − β (part (ii) of Lemma 2), signal s = 1 is no longer
an atom signal under F1−β,0. In fact, the support of F1−β,0 is just [1 − β, β] and
both F1−β,0

0 and F1−β,0
1 share this common support. Hence, every signal is below β.

This guarantees that, when the receiver’s private belief is β, she always chooses the
sender’s preferred action. This is why φF1−β,0

(β) = 1/2. Likewise, when β > 1/2

and α ≥ 1−β (part (iii) of Lemma 2), both Fα,b̂
0 and Fα,b̂

1 share the common support

[α, β], which again guarantees that φFα,b̂
(β) = 1/2.18

15 Unlike the case where the prior is less than 1/2, there are many information structures that maximize
the sender’s expected payoff when the prior greater than 1/2 and the receiver has no private information.
For example, the completely uninformative information structure does the job.
16 The only exception is Fα,α . Recall (8).
17 The functional form of Fx,0 is given by A.5 in Appendix A.
18 What makes the value 1/2 special relative to β is the fact that the receiver’s cut-off belief at which she
is indifferent between actions a = 0 and a = 1 is 1/2. Changing the receiver’s belief cut-off to an arbitrary
number in (0, 1)will not change our results qualitatively. But it will definitely make the analysis much more
cumbersome given that the current analysis is already very complex.
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Fig. 3 The set A(α, β) and the corresponding LCPIS’s
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Fig. 4 The dominant LCPIS Fx,0

For any initial point (x, b) ∈ A(α, β), we prove the result by explicitly constructing
the dominant LCPIS. For instance, consider an initial point of type (x, 0) ∈ A(α, β).
If F is an LCPIS with initial point (x, 0), then φF (p) = a(p − x) for some a > 0
over the interval [x, β]. Using the expression of φF in (5) and applying integration by
parts, we can rewrite this relationship as

φF (p) = 2p(1 − p)F(p) − (1 − 2p)
∫ p

x
F(s)ds = a(p − x), ∀p ∈ [x, β]. (9)

This continuum of equations defines a differential equation

2p(1 − p)
dy

dp
− (1 − 2p)y = a(p − x) (10)

over interval [x, β] with initial condition y(x) = 0. The unique solution of this differ-
ential equation together with the condition F(s) = 0 for all s ≤ x (since φF (x) = 0)
give us the functional form of F over [0, β] that satisfies (9). The slope a is a parameter
in F . We then find the maximal value of a with which this F function over [0, β] can
be extended to an information structure. This results in the dominant LCPIS Fx,0.
The construction of the dominant LCPIS for the initial point of type (α, b) ∈ A(α, β)

is similar. The only difference is that Fα,b has an atom at α in order to guarantee
φFα,b

(α) = b > 0.

3.2.3 Optimality

With a rich set of dominant LCPIS’s, we can proceed to show our main result, Propo-
sition 2. For this, it suffices to show that the worst-case expected payoff function
co[α,β]φF of any arbitrary information structure F is always below the function
Ṽ ( · ; [α, β]) : [α, β] → R defined as
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Ṽ (π; [α, β]) = max
(x,b)∈A(α,β)

φFx,b
(π), ∀π ∈ [α, β]. (11)

The value Ṽ (π; [α, β]) is the highest worst-case payoff the sender can obtain by using
only dominant LCPIS’s. However, a direct comparison of co[α,β]φF and Ṽ ( · ; [α, β])
is impossible, because φF can be quite complicated for an arbitrary F , let alone
its worst-case payoff function. The trick here is to approximate co[α,β]φF by linear
functions below φF . The comparison between these linear functions and the function
Ṽ ( · ; [α, β]) turns out to be much more tractable, since, after all, Ṽ ( · ; [α, β]) is just
the upper envelope of some “linear functions.” The following lemma, which is the key
to Proposition 2, gives a formal statement of this comparison.

Lemma 3 (Optimality) For any information structure F ∈ F and linear function
� : [α, β] → R below φF , there exists an initial point (x, b) ∈ A(α, β) such that

�(p) ≤ φFx,b
(p), ∀p ∈ [α, β].

In words, Lemma 3 states that the dominant LCPIS’s in Lemma 2 dominate not only
all the LCPIS’s, but all linear functions below any contingent payoff function. Another
way to understand Lemma 3 is to think about how fast on average a contingent payoff
function can grow over the interval [α, β]. Suppose φF (α) = b for some information
structure F . Lemma 3 implies that the minimal average growth rate of φF over [α, β],

inf
p∈[α,β]

φF (p) − b

p − α
,

has an upper bound. The dominant LCPIS Fα,b achieves this upper bound by ensuring
that φFα,b

grows at a constant rate. Similarly, if φF (x) = 0 for some x ∈ (α, β), then
its minimal average growth rate over (x, β) is bounded above by that of Fx,0, whose
contingent payoff function grows at a constant rate.

We use the case β ≤ 1/2 to sketch the Proof of Lemma 3. Suppose the linear
function �(p) = a(p − α) + b is below φF for some a > 0 and b ≤ α.19 Assume
b > 0 for the moment. Because � is below φF , we have

2p(1 − p)F(p) − (1 − 2p)
∫ p

0
F(s)ds ≥ a(p − α) + b, ∀p ∈ [α, β]. (12)

This inequality is similar to (9). But the critical difference is that we now have a
“differential inequality,” which cannot be explicitly “solved.” What we show is that F
over the interval [α, β] is bounded below by the solution G to the differential equation

2p(1 − p)G(p) − (1 − 2p)
∫ p

α

G(s)ds = a(p − α) + b, ∀p ∈ [α, β], (13)

19 Since l ≤ φF , b = �(α) ≤ φF (α) ≤ φFα,α
(α) = α. If a ≤ 0, then � ≤ φFα,α

.
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Fig. 5 Illustration of the proof for Lemma 3

with the initial condition
∫ α

α
G(s)ds = 0. Since (α, b) ∈ A(α, β) by Lemma 2, we can

compare the solution G and the dominant LCPIS Fα,b. If a is greater than the slope
of φFα,b

, we know that such solution G can not be part of an information structure;
otherwise, it contradicts the dominance of φFα,b

. Using the fact that F is above G over
[α, β], we further show that F cannot be an information structure either if a is greater
than the slope of φFα,b

. This in turn implies that � ≤ φFα,b
, since � and φFα,b

share
the same initial point.

Figure5 illustrates the above idea. The thick black curve represents an arbitrary
contingent payoff function φF . The straight line �, which takes the form �(p) =
a(p − α) + b for some b ∈ [0, α] and a > 0, is below φF over [α, β]. What we show
is that the slope a is no greater than that of φFα,b

. This immediately implies that � can
not exceed φFα,b

over [α, β], as shown in the figure.
If b ≤ 0, then there exists x ∈ [α, β) such that �(x) = 0.20 In this case, since

(x, 0) ∈ A(α, β) by Lemma 2, we can use a similar argument as above to show
that � ≤ φFx,0

. The straight line �′ in Fig. 5 illustrates this case. It takes the form
�′(p) = a(p − x) for some a > 0. What we show is that its slope a is no greater
than that of φFx,0

. This, again, immediately implies that �′ can not exceed φFx,0
over

[α, β].

20 If such x does not exist, then � is everywhere below 0. But every LCPIS is bounded below by 0.
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When β > 1/2, the initial point (α, b) or (x, 0) in the above arguments may not be
contained in A(α, β), as is defined in Lemma 2. However, in this case, � ≤ φF1−β,0

if

α < 1 − β and � ≤ φFα,b̂
if α ≥ 1 − β.

3.2.4 Optimal information structure

With Proposition 2, we can now characterize the sender’s optimal information struc-
ture. Specifically, to find a sender’s optimal information structure for prior π ∈ (α, β),
we only need to solve the optimization problem (11).

The following proposition fully characterizes the solution to (11) for the first two
cases in Lemma 2: α < β ≤ 1/2 or α < 1 − β < 1/2 < β. Except for a special
cut-off prior, there is a unique sender optimal information structure within the class
of LCPIS’s.

Proposition 3 Suppose α < β ≤ 1/2 or α < 1 − β < 1/2 < β. Consider the
optimization problem (11). There exists a cut-off prior π̂ ∈ (α, β), such that

(i) if π ∈ (α, π̂), Fα,α is the unique solution;
(ii) if π = π̂ , any Fα,b for b ∈ [0, α] is a solution; and
(iii) if π ∈ (π̂, β), the unique solution takes the form of Fx∗(π),0 for some x∗(π) ∈

(α,min{π, 1 − β}]. As a function of π , x∗ is continuous, increasing with range
(α,min{β, 1 − β}).

Proposition 3 is best understood by looking at Figs. 6 and 7, which illustrate the
dominant linear-contingent-payoff functions and the value functions for the cases
α < β ≤ 1/2 and α < 1 − β < 1/2 < β, respectively. Take Fig. 6a as an example.
Figure6a depicts some dominant linear-contingent-payoff functions. Starting from
(α, α), as the initial point goes down along the line segment between (α, α) and (α, 0),
the sender’s contingent payoff strictly decreases at private beliefα and strictly increases
at private belief β. This change can be seen by comparing the red curve, φFα,α

, and the
solid blue curve, φFα,0

in Fig. 6a. Interestingly, all these contingent payoff functions
{φFα,b }b∈[0,α] happen to rotate around one single point, π̂ . Starting from (α, 0), as the
initial point moves to the right along the line segment between (α, 0) and (β, 0), the
sender’s contingent payoff at private belief β continues to increase. This change can
be seen by comparing the solid blue curve, φFα,0

, and the dashed blue curve, φFx,0

in Fig. 6a. As x approaches β, φFx,0
(β) also increases to β. These contingent payoff

functions intersect φFα,0
at points to the right of the cut-off prior π̂ .

To solve problem (11) for priorπ ∈ (α, β), we only need to checkwhich contingent
payoff function is the highest at π in Fig. 6a. From the above explanation, at prior π

below the cut-off π̂ , only Fα,α is optimal. When π = π̂ , any Fα,b for b ∈ [α, β] is
optimal. When π is above the cut-off prior π̂ , LCPIS’s of the form Fα,b are no longer
optimal. Instead, the optimal LCPIS appears in {Fx,0}x∈(α,β). However, no single
LCPIS is optimal for all priors above π̂ . Instead, there is a one-to-one correspondence
between priors above π̂ and the optimal Fx,0. Figure6b illustrates the sender’s value
function V . For priors below the cut-off π̂ , V just coincides with φFα,α

and thus is
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Fig. 6 Dominant LCP functions and the value function for α < β ≤ 1
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Fig. 7 Dominant LCP functions and the value function for α < 1 − β < 1/2 < β

linear. For priors above the cut-off, V is the upper envelope of {φFx,0}x∈(α,β) and is
strictly convex.

Holding α and β fixed, the comparative statics of the optimal information structure
with respect to prior π also coincide with our intuition. When the prior is below the
cut-off π̂ , Fα,α is optimal because the sender knows that the receiver’s private beliefs
aremore likely to be close toα and Fα,α yields high contingent payoffs over this range.
In contrast, when π is above the cut-off π̂ , the sender knows that the receiver’s private
beliefs are more likely to be close to β. Hence, the optimal information structure
guarantees high contingent payoffs over this range, although it gives the sender his
lowest possible payoffwhen the receiver’s private belief is low.As the prior approaches
β, the sender iswilling to sacrifice his contingent payoff for a larger range of lowprivate
beliefs in exchange for higher contingent payoffs at high private beliefs.

The next proposition reports the characterization of the solution to (11) for the last
case in Lemma 2: 1 − β ≤ α < 1/2 < β. The idea and result are similar to those of
Proposition 3.
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Fig. 8 Dominant LCP functions and the value function for 1 − β ≤ α < 1/2 < β

Proposition 4 Suppose 1−β ≤ α < 1/2 < β. There exists a cut-off prior π̂ ∈ (α, β),
such that

(i) if π ∈ (α, π̂), Fα,α is optimal;
(ii) if π = π̂ , any Fα,b for b ∈ [b̂, α] is optimal; and
(iii) if π ∈ (π̂, β), Fα,b̂ is optimal.

The major qualitative difference between Propositions 3 and 4 is that Fα,b̂ alone
is optimal for all priors above the cut-off π̂ when α ≥ 1 − β. Thus, the optimal
information structure is either the KG solution for belief α or a KG solution for belief
β. Figure8 illustrates the dominant linear-contingent-payoff functions and the sender’s
value function for this case.

We can also show that b̂ increases to α as β increases to 1.21 Thus, as β increases
to 1, π̂ increases to 1 as well and the optimal information structure in Proposition 4
degenerates to Fα,α for all π . Therefore, the optimal information structure for the case
β = 1 is indeed the limiting case as β goes to 1.

Given α < β, both Propositions 3 and 4 show that the optimal information structure
is unique within the class of LCPIS’s for all π ∈ (α, β)\{π̂}. In fact, we can further
show that Fα,α is the unique optimal information structure for prior π < π̂ . When

1− β ≤ α < 1/2 < β, we can also show that Fα,b̂ is the unique optimal information
structure for prior π > π̂ . For other cases, although we conjecture the unique optimal
dominant LCPIS is also the unique optimal information structure, unfortunately we
are unable to prove it.

3.3 Impacts of limited knowledge

From the analysis so far, we see that the ambiguity faced by the sender [α, β] greatly
affects the sender’s highest worst-case payoff and optimal information design. But
when the ambiguity vanishes, the sender can always guarantee himself the payoff he
would obtain if there were no ambiguity at all.

21 See (A.4) for the closed form of b̂.
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Corollary 1 Suppose α < π < β. We have

lim
α̃↑π

V (π; [α̃, β]) = lim
β̃↓π

V (π; [α, β̃]) = max
F∈F

φF (π).

According to our model specification, when either α = π or β = π , the ambiguity
completely disappears, because in this case the only private belief that the sender could
have is just the prior π . As a result, Corollary 1 implies that ambiguity has little impact
on the sender’s expected payoff when there is only one-sided ambiguity, e.g., when the
receiver’s good news or bad news private signal is always sufficiently uninformative.
It is important to note that Corollary 1 does not claim that the KG solution for belief
π , i.e., the one that solves maxF∈F φF (π), is robust when the ambiguity vanishes.
For example, consider π < 1/2. As long as there is ambiguity, i.e., α < π < β, the
KG solution for belief π always yields 0 worst-case payoff to the sender, regardless
of how little ambiguity the sender is facing. Rather, Corollary 1 only states that the
sender can find a way to guarantee himself a worst-case payoff close to maxF∈F φF ,
e.g., the optimal information structure we found above, as the ambiguity vanishes.

When the ambiguity becomes larger, the sender is never better off. Our previous
analysis can further tell us whether the sender becomes strictly worse off when fac-
ing more ambiguity. We focus on the case α < 1/2, as we always do. Otherwise,
V (π; [α, β]) = 1/2 is a constant for all π ∈ [α, β] ⊂ [1/2, 1].
Corollary 2 (i) Suppose π < β. There exists α̂ ∈ (0,min{π, 1/2}) such that

V (π; [ · , β]) is constant over (0, α̂)and is strictly increasingover (α̂,min{π, 1/2}).
(ii) Suppose α < π and α < 1/2. There exists β̂ ∈ (π, 1) such that V (π; [α, · ]) is

strictly decreasing over (π, β̂) and is a constant over (β̂, 1).

Thus, there is a limit on the effect of increased one-sided ambiguity on lowering the
sender’s welfare. Intuitively speaking, if the ambiguity is already very biased towards
one side, then a further increase in the ambiguity of that side will not harm the sender.
To understand the idea, take the case π < β < 1/2 as an example. When α is close to
π , the sender’s optimal information structure is Fα,α as shown in Proposition 3. As we
have discussed, this is because the sender believes that the receiver’s private beliefs are
more likely to be close to α. By choosing Fα,α , the sender can guarantee himself high
payoffs if the receiver’s private belief appears in this region. If α decreases a little to α′,
the sender still wants to make sure that he can obtain high payoffs when the receiver’s
private belief is close to α′. For this purpose, the sender has to switch to Fα′,α′

to take
care of those private beliefs in [α′, α). Hence, the sender gets strictly worse off. If,
instead, α is small, then the sender thinks that the receiver’s private beliefs are more
likely to be close to β. Thus, the optimal information structure for the sender is of the
form Fx,0. By choosing this information structure, the sender guarantees high payoff
when the receiver’s private belief is close to β and essentially ignores the possibility
that the receiver’s private belief can be below x . If α moves further away from π to
α′, the sender should even put more emphasis on the receiver’s private beliefs close to
β. Thus, the sender should continue ignoring the possibility that the receiver’s private
belief can be below x . That is, it is optimal for the sender to stick to Fx,0. By doing
so, the sender can obtain exactly the same worst-case payoff he would obtain under

123



932 J. Hu, X. Weng

α. Hence, the sender is not worse off. The logic behind increasing β is similar. The
difference is that when β is sufficiently large, the sender will stick to Fα,α to guarantee
high payoffs at private beliefs close to α.

4 Conclusion

In this paper, we studied a robust Bayesian persuasion problem where the receiver
has private information source about which the sender has limited knowledge. In this
two-by-two environment, we showed that the sender’s optimal information structure
is an LCPIS. In our model, we assumed that the sender uses only public persuasion.
That is, the sender designs a public information disclosure rule independent of the
receiver’s private information. Yet, like Kolotilin et al. (2017) and Bergemann et al.
(2018), we can also think of environments in which the sender uses private persuasion.
That is, the sender conditions the disclosure rule on the receiver’s reported type. In
such environments, the sender must design a mechanism of private persuasion that
is incentive-compatible and robust to his knowledge about the distribution of the
receiver’s private beliefs. This is left for future research.

The new techniquewedeveloped in characterizing the optimal information structure
makes the most of the convexity of the sender’s worst-case payoff function. This
method can also be applied to the robust pricing problem studied in Carrasco et al.
(2018), in which the seller has only first moment information. We believe that this
technique can also be applied tomany other contexts inwhich there aremean-restricted
ambiguity and robustness concerns.
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Appendix A Proof of Lemma 2

A.1 Mathematical preliminaries

For any real numbers x < β, let C[x, β] be the space of all continuous functions over
[x, β] endowed with the uniform norm ‖ · ‖.
Lemma A.1 Suppose 0 < x < β ≤ 1/2. Let h ∈ C[x, β] be an arbitrary function
and let T : C[x, β] → C[x, β] be the operator defined as follows: for f ∈ C[x, β],

(T f )(p) ≡ h(p) + (1 − 2p)
∫ p
x f (s)ds

2p(1 − p)
, ∀p ∈ [x, β].
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Then T is a contraction mapping. As a result, T has a unique fixed point f ∗ ∈ C[x, β]
and therefore limn T ng = f ∗ for any g ∈ C[x, β].
Proof Clearly, for every f ∈ C[x, β], the function T f : [x, β] → R is well defined
and continuous. Thus, T : C[x, β] → C[x, β] is well defined. For any f , g ∈
C[x, β], we have

‖T f − Tg‖ = max
x≤p≤β

∣∣∣∣ 1 − 2p

2p(1 − p)

∫ p

x

(
f (s) − g(s)

)
ds

∣∣∣∣
≤ ‖ f − g‖ max

x≤p≤β

(1 − 2p)(p − x)

2p(1 − p)
.

Because

(1 − 2p)(p − x)

2p(1 − p)
= 1 − p(1 − x) + (1 − p)x

2p(1 − p)
≤ 1 − x(1 − x)

β(1 − β)
, ∀p ∈ [x, β],

we know that T is a contraction mapping. ��
Lemma A.2 Suppose 1/2 < β < 1. Let h ∈ C[1/2, β] be an arbitrary function and let
T : C[1/2, β] → C[1/2, β] be the operator defined as follows: for f ∈ C[1/2, β],

(T f )(p) ≡ h(p) − (1 − 2p)
∫ β

p f (s)ds

2p(1 − p)
, ∀p ∈ [1/2, β].

Then T is a contraction mapping. As a result, T has a unique fixed point f ∗ ∈
C[1/2, β] and limn T ng = f ∗ for any g ∈ C[1/2, β].
Proof The proof is analogical to that of Lemma A.1 and thus is omitted. ��
Lemma A.3 Suppose 0 < x < β < 1. Let F : [0, β] → R be a function. Suppose F
satisfies

2p(1 − p)F(p) − (1 − 2p)
∫ p

0
F(s)ds = a(p − x) + b, ∀p ∈ [x, β], (A.1)

for some constants a and b. Then,

F(s) = (1 − 2x)a + 2b + (1 − 2x)b − 2x(1 − x)a + ∫ x
0 F(t)dt

2
√
x(1 − x)

1 − 2s√
s(1 − s)

, ∀s ∈ [x, β].
(A.2)

Proof It is straightforward (but tedious) to verify that F in (A.2) satisfies (A.1). It
remains to show that it is the unique solution.

When β ≤ 1/2, uniqueness directly comes from Lemma A.1 since condition (A.1)
can be rewritten as

F(p) = h(p) + (1 − 2p)
∫ p
x F(s)ds

2p(1 − p)
, ∀p ∈ [x, β],
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where h(p) = a(p − x) + b + (1 − 2p)
∫ x
0 F(s)ds for p ∈ [x, β].

When β > 1/2, we can divide the interval [x, β] into two sub-intervals [x, 1/2]
and [1/2, β]. Then we can apply Lemma A.1 to [x, 1/2] and Lemma A.2 to
[1/2, β]. ��

A.2 Construction of LCPIS’s

For ease of exposition in the following analysis, define a function

Hx,b(s; a) ≡ (1 − 2x)a + 2b + (1 − 2x)b − 2x(1 − x)a

2
√
x(1 − x)

1 − 2s√
s(1 − s)

. (A.3)

When 1 − β ≤ α < 1/2 < β, let

b̂ ≡
1−α
1−β

−
√

(1−α)β
α(1−β)[√

(1−α)β
α(1−β)

− 1
]2 ∈ [0, α). (A.4)

We will see that this is just the b̂ claimed in part (iii) of Lemma 2. Let A(α, β) be
the set of initial points defined in Lemma 2:

A(α, β) =

⎧⎪⎨
⎪⎩

{(α, b) | 0 < b ≤ α}⋃{(x, 0) | α ≤ x < β}, if β < 1/2,
{(α, b) | 0 < b ≤ α}⋃{(x, 0) | α ≤ x ≤ 1 − β}, if α < 1 − β < 1/2 < β,

{(α, b) | b̂ ≤ b ≤ α}, if 1 − β ≤ α < 1/2 < β.

We are now ready to construct the desired dominant LCPIS’s. For every (x, b) ∈
A(α, β), let Fx,b : [0, 1] → R be the function defined as follows:

Fx,b(s) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if s ∈ [0, x),
Hx,b

(
s; ax,b), if s ∈ [x, β),

Hx,b
(
β; ax,b), if s ∈ [β, 1),

1 if s = 1,

(A.5)

where ax,b ∈ R is the unique solution to the following linear equation:

2(1 − x)

[
1 −

√
x(1 − β)

(1 − x)β

]
ax,b +

[
2 + (1 − 2x)

√
1 − β√

x(1 − x)β

]
b = 1. (A.6)

It is easy to verify that, when (x, b) = (α, α), Fx,b in (A.5) becomes Fα,α as
defined in (8), which we have already known is a dominant LCPIS. In what follows,
we proceed to verify that Fx,b is a dominant LCPIS for every (x, b) ∈ A(α, β).
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A.3 Proof of Lemma 2

We first show that Fx,b is an LCPIS for every (x, b) ∈ A(α, β) through Lemmas
A.4–A.6.

Lemma A.4 For every (x, b) ∈ A(α, β), Fx,b ∈ F .

Proof Wemust verify that Fx,b is a c.d.f. over [0, 1] and its mean is 1/2. By construc-
tion, it is obvious that Fx,b(0) = 0, Fx,b(1) = 1, and Fx,b is right continuous. To
show that Fx,b is a c.d.f, it remains to verify that it is nondecreasing. The verification is
divided into the following three steps. We will frequently use the fact that b ≤ x < β

for all (x, b) ∈ A(α, β).
Step 1: Fx,b(x) ≥ 0.
This directly follows from (A.5) and (A.6):

Fx,b(x) = Hx,b(x; ax,b) = b

2x(1 − x)
≥ 0.

Step 2: Fx,b is nondecreasing over [x, β].
Equivalently, we have to show that Hx,b( · ; ax,b) is nondecreasing over [x, β]. By

(A.6),

(1 − 2x)b − 2x(1 − x)ax,b = b − x

1 −
√

x(1−β)
(1−x)β

≤ 0.

Then, because the mapping s �→ (1−2s)/
√
s(1 − s) is strictly decreasing over (0, 1),

we know that Hx,b( · ; ax,b) is nondecreasing over [x, β].
Step 3: Fx,b(β) ≤ 1.
Using (A.5) and (A.6), we can calculate

Fx,b(β) = 1

2
+ x

√
(1 − x)β

2(1 − x)
√
x(1 − β)

+
(√

x(1 − β) − √
(1 − x)β

)
2(1 − x)

√
x(1 − β)

b.

Because x < β, we know the right-hand side is decreasing in b. When α < β ≤ 1/2,

Fx,b(β) ≤ Fx,0(β) = 1

2
+

√
xβ

2
√

(1 − x)(1 − β)
≤ 1,

where the second inequality comes from the fact that both x ≤ 1 − x and β ≤ 1 − β

hold. When α < 1 − β < 1/2 < β, we have x ≤ 1 − β and

Fx,b(β) ≤ Fx,0(β) = 1

2
+

√
xβ

2
√

(1 − x)(1 − β)

≤ F1−β,0(β) = 1

2
+

√
(1 − β)β

2
√

β(1 − β)
= 1.
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When 1 − β < α < 1/2 < β, we have x = α and thus

Fα,b(β) ≤ Fα,b̂(β) = 1,

where the equality comes from the definition of b̂ in (A.4).22 Steps 1–3 together imply
that Fx,b is nondecreasing. Hence Fx,b is a c.d.f.

Finally,

∫
[0,1]

sdFx,b(s) =
∫

[x,β]
sdFx,b(s) + (

1 − Fx,b(β)
)

= βFx,b(β) −
∫ β

x
Fx,b(s)ds + (

1 − Fx,b(β)
)

= 1 − (1 − x)

[
1 −

√
x(1 − β)

(1 − x)β

]
ax,b −

[
1 + (1 − 2x)

√
1 − β

2
√
x(1 − x)β

]
b

= 1

2
,

proving that Fx,b ∈ F . ��
Lemma A.5 For any information structure F ∈ F , we have

φF (p) = 2p(1 − p)F(p) − (1 − 2p)
∫ p

x
F(s)ds, ∀p ∈ [0, 1].

Proof This directly comes from the expression for the contingent payoff in (5) in the
main text and integration by parts. See, for example, Theorem 21.67 in Hewitt and
Stromberg (1965) for integration by parts for Lebesgue–Stieltjes integrals. ��
Lemma A.6 For every (x, b) ∈ A(α, β), Fx,b is an LCPIS over [α, β] with initial
point (x, b) and slope ax,b > 0.

Proof Consider (x, b) ∈ A(α, β). By construction, Fx,b satisfies condition (A.2) with,
a in (A.2) being replaced by ax,b. Thus, Fx,b satisfies (A.1) byLemmaA.3. ByLemma
A.5, we have

φFx,b
(p) = ax,b(p − x) + b, ∀p ∈ [x, β].

By (A.6) and b ≤ x < min{β, 1 − β} ≤ 1/2, we have

ax,b =
1 −

[
2 + (1−2x)

√
1−β√

x(1−x)β

]
b

2(1 − x)
[
1 −

√
x(1−β)
(1−x)β

] ≥
1 −

[
2 + (1−2x)

√
1−β√

x(1−x)β

]
x

2(1 − x)
[
1 −

√
x(1−β)
(1−x)β

] = 1 − 2x

2(1 − x)
> 0.

22 In fact, b̂ is so constructed that it is the unique solution to Hα,b̂(β; aα,b̂) = 1 for 1−β ≤ α < 1/2 < β.
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If x = α, then φFx,b
is a strictly increasing linear function over [α, β]. It is an

LCPIS with initial point (x, b) and slope ax,b.
If x > α, then b = 0 and thus 0 ≤ φFx,b

(p) ≤ φFx,b
(x) = b = 0 for all p < x ,

where the second inequality comes from the fact that the contingent payoff function
is nondecreasing in private belief [see (5)]. Therefore,

φFx,b
(p) = max{0, ax,b(p − x)}, ∀p ∈ [α, β].

This is an LCPIS with initial point (x, b) and slope ax,b too. ��
Next, we show that Fx,b is the unique dominant LCPIS with initial point (x, b) ∈

A(α, β) through Lemmas A.7–A.9.

Lemma A.7 Suppose β ∈ (0, 1). If F ∈ F , then

(1 − β)F(β) +
∫ β

0
F(s)ds ≤ 1

2
, (A.7)

with equality if and only if F does not contain signals in (β, 1), i.e., lims↑1 F(s) =
F(β).

Proof We have

1

2
=
∫

[0,β]
sdF(s) +

∫
(β,1]

sdF(s)

≤
∫

[0,β]
sdF(s) + 1 − F(β)

= βF(β) −
∫ β

0
F(s)ds + 1 − F(β),

where the last equality comes from integration by parts. Rearranging yields (A.7).
Clearly, this inequality becomes an equality if and only if

∫
(β,1] sdF(s) = 1 − F(β)

if and only if F does not contain signals in (β, 1). ��
Lemma A.8 For every (x, b) ∈ A(α, β), we have

(1−β)Hx,b(β; ax,b)+
∫ β

x
Hx,b(s; ax,b)ds = (1−β)Fx,b(β)+

∫ β

0
Fx,b(s)ds = 1

2
.

(A.8)

Proof The first equality comes from our construction of Fx,b. The second equality
comes from lims↑1 Fx,b(s) = Fx,b(β) and Lemma A.7. ��
Lemma A.9 Consider an initial point (x, b) ∈ A(α, β). Suppose F is an LCPIS with
initial point (x, b) and slope a > 0. If F �= Fx,b, then a < ax,b.
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Proof By Lemmas A.3 and A.5, the fact that F is an LCPIS with initial point (x, b)
and slope a implies that F over [x, β] satisfies (A.2). Using our construction of the
function Hx,b in (A.3), we can write

F(s) = Hx,b(s; a) +
∫ x
0 F(t)dt

2
√
x(1 − x)

1 − 2s√
s(1 − s)

, ∀s ∈ [x, β].

Thus, we can calculate

∫ β

0
F(s)ds =

∫ x

0
F(s)ds +

∫ β

x

(
Hx,b(s; a) +

∫ x
0 F(t)dt

2
√
x(1 − x)

1 − 2s√
s(1 − s)

)
ds

=
∫ β

x
Hx,b(s; a)ds +

√
β(1 − β)

∫ x
0 F(t)dt√

x(1 − x)
.

Hence, by Lemma A.5, we have

1

2
≥ (1 − β)F(β) +

∫ β

0
F(s)ds

= (1 − β)Hx,b(β; a) +
∫ β

x
Hx,b(s; a)ds + (1 − β)

∫ x
0 F(t)dt

2
√
x(1 − x)

√
β(1 − β)

,

(A.9)

with equality if and only if lims↑1 F(s) = F(β). By Lemma A.8, we then have

(1 − β)Hx,b(β; a) +
∫ β

x
Hx,b(s; a)ds + (1 − β)

∫ x
0 F(t)dt

2
√
x(1 − x)

√
β(1 − β)

≤ (1 − β)Hx,b(β; ax,b) +
∫ β

x
Hx,b(s; ax,b)ds,

(A.10)

with equality if and only if lims↑1 F(s) = F(β). It is easy to check from (A.3)
that Hx,b(s; · ) is strictly increasing for every s > x . Thus, (A.10) directly implies
a ≤ ax,b, since the last term in the first line is nonnegative.

If a = ax,b, then (A.10) implies that
∫ x
0 F(t)dt = 0, which in turn implies that

(A.10) holds with equality. These observations together imply

F(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if s ∈ [0, x),
Hx,b(s; ax,b), if s ∈ [x, β),

Hx,b(β; ax,b), if s ∈ [β, 1),

1, if s = 1,

which exactly coincides with Fx,b. Equivalently, if F �= Fx,b, wemust have a < ax,b,
completing the proof. ��
Proof of Lemma 2 Lemma A.9 has already shown that Fx,b is the unique dominant
LCPIS with initial point (x, b) ∈ A(α, β), as claimed by Lemma 2.
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When α < 1 − β < 1/2 < β, we have shown F1−β,0(β) = 1 in the proof of
Lemma A.4. Therefore,

φF1−β,0
(β) =

∫
[0,β]

[(1 − β)s + β(1 − s)]dF1−β,0(s)

=
∫

[0,1]
[(1 − β)s + β(1 − s)]dF1−β,0(s)

= 1 − β

2
+ β

2

= 1

2
,

where the third equality comes from
∫
[0,1] sdF

1−β,0(s) = 1/2.

Similarly, when 1 − β ≤ α < 1/2 < β, we have shown that Fα,b̂(β) = 1 in the

proof of Lemma A.4. As above, we can show that φFα,b̂
(β) = 1/2. This completes

the proof. ��

Appendix B Proof of Lemma 3

B.1 Mathematical preliminaries

Lemma B.1 Assume β ≤ 1/2. Let F ∈ F be an arbitrary information structure.
Assume that �(p) ≡ a(p−x)+b ≤ φF (p) for all p ∈ [α, β], where (x, b) ∈ A(α, β)

and a > 0. Then F(s) ≥ Hx,b(s; a) for s ∈ [x, β].
Proof Define a sequence of continuous functions {Gn}n≥0 over [x, β] as follows:

G0(p) ≡ 0, ∀p ∈ [x, β],

and for n ≥ 1,

Gn(p) ≡ �(p) + (1 − 2p)
∫ p
x Gn−1(s)ds

2p(1 − p)
, ∀p ∈ [x, β].

By Lemma A.1, {Gn}n≥0 uniformly converges to a function G that satisfies

G(p) = �(p) + (1 − 2p)
∫ p
x G(s)ds

2p(1 − p)
, ∀p ∈ [x, β].

By Lemma A.3, G(p) = Hx,b(p; a) for p ∈ [x, β].
It remains to show that F ≥ G over [x, β]. Clearly, F ≥ G0 over [x, β]. Suppose

F ≥ Gn−1 over [x, β] for some n ≥ 1. Because φF ≥ � over [α, β], we know that

φF (p) = 2p(1 − p)F(p) − (1 − 2p)
∫ p

0
F(s)ds ≥ �(p), ∀p ∈ [x, β].
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This implies, for all p ∈ [x, β],

2p(1 − p)F(p) ≥ �(p) + (1 − 2p)
∫ p

0
F(s)ds

≥ �(p) + (1 − 2p)
∫ p

x
F(s)ds

≥ �(p) + (1 − 2p)
∫ p

x
Gn−1(s)ds,

where the second inequality comes from p ≤ β ≤ 1/2 and F ≥ 0. The last inequality
comes from the induction hypothesis. Rearranging yields

F(p) ≥ �(p) + (1 − 2p)
∫ p
x Gn−1(s)ds

2p(1 − p)
= Gn(p), ∀p ∈ [x, β].

Therefore, F ≥ Gn over [x, β] for all n, implying F ≥ G = Hx,b( · ; a) over [x, β].
This completes the proof. ��
Lemma B.2 Assume 1/2 < β < 1. Let F ∈ F be an arbitrary information structure.
Assume that �(p) ≡ a(p − x) + b ≤ φF (p) for all p ∈ [α, β], where (x, b) ∈
A(α, β) and a > 0. Then F(s) ≥ Hx,b(s; a) for s ∈ [x, 1/2] and F(s) ≥ G(s) for
s ∈ [1/2, β], where

G(s) ≡ (1−2x)a+2b− (2(1 − x)a + 2b − 1)β

2
√

β(1 − β)

1 − 2s√
s(1 − s)

, ∀s ∈ [1/2, β]. (B.1)

Proof The first half of the claim, F ≥ Hx,b( · ; a) over [x, 1/2], can be obtained by
letting β = 1/2 in Lemma B.1. We only prove the second half of the claim, F ≥ G
over [1/2, β]. The proof is similar to that of Lemma B.1. Define �′ : [1/2, β] → R

as

�′(p) = (
a − 2β + 2a(β − α) + 2b

)
p − aβ + β, ∀p ∈ [1/2, β].

Define a sequence of continuous functions {Gn}n≥0 over [1/2, β] as follows:

G0(p) ≡ 0, ∀p ∈ [1/2, β],

and

Gn(p) ≡ �′(p) − (1 − 2p)
∫ β

p Gn−1(s)ds

2p(1 − p)
, ∀p ∈ [1/2, β].

By Lemmas A.2 and A.3, {Gn}n≥0 uniformly converges to G in (B.1).
It remains to show that F ≥ G over [1/2, β]. As in the proof of Lemma B.1, it

suffices to show that F ≥ Gn over [1/2, β] for all n ≥ 1. Clearly F ≥ G0 over
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[1/2, β]. Assume F ≥ Gn−1 over [1/2, β] for some n ≥ 1. From (5), we can rewrite
φF as

φF (p) = pF(p) + (1 − 2p)

(
1/2 −

∫
(p,1]

sdF(s)

)

= 2p(1 − p)F(p) + (1 − 2p)
∫ 1

p
F(s)ds − 1

2
(1 − 2p),

where the second equality follows from integration by parts again. Because � ≤ φF ,
it follows that for all p ∈ [1/2, β],

2p(1 − p)F(p)

≥ �(p) + 1

2
(1 − 2p) − (1 − 2p)

∫ 1

p
F(s)ds

≥ �(p) + 1

2
(1 − 2p) − (1 − 2p)

∫ β

p
F(s)ds − (1 − 2p)(1 − β)F(β), (B.2)

where the second inequality follows from 1 − 2p ≤ 0 for p ∈ [1/2, β] and∫ 1
p F(s)ds ≥ ∫ β

p F(s)ds + (1 − β)F(β). Letting p = β in the above inequality
yields

(1 − β)F(β) ≥ �(β) + 1

2
(1 − 2β).

Plugging this inequality back into (B.2), it follows that for p ∈ [1/2, β],

2p(1 − p)F(p) ≥ �(p) − (1 − 2p)
∫ β

p
F(s)ds − (1 − 2p)

(
�(β) − β

)

= �′(p) − (1 − 2p)
∫ β

p
F(s)ds

≥ �′(p) − (1 − 2p)
∫ β

p
Gn−1(s)ds,

where the last inequality comes from the induction hypothesis and 1 − 2p ≤ 0 for
p ∈ [1/2, β]. Equivalently, we have

F(p) ≥ �′(p) − (1 − 2p)
∫ β

p Gn−1(s)ds

2p(1 − p)
= Gn(p), ∀p ∈ [1/2, β].

Therefore, F ≥ Gn for all n over [1/2, β], implying F ≥ G over [1/2, β]. This
completes the proof. ��
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B.2 Proof of Lemma 3

We are now ready to prove Lemma 3. We divide the whole proof into two proofs. The
first deals with the case β ≤ 1/2 and the second deals with the case β > 1/2.

Proof of Lemma 3 for β ≤ 1/2. Assume β ≤ 1/2. Suppose F ∈ F is an information
structure. Assume linear function � ≤ φF over [α, β]. If the slope of � is non-positive,
then � ≤ φFα,α

because �(α) ≤ φF (α) ≤ φFα,α
(α) and the slope of φFα,α

is positive.
Assume the slope is positive. If �(β) ≤ 0, then � ≤ 0 ≤ φFα,α

. Thus, in what follows,
we assume positive slope and �(β) > 0.

Then, there must exist (x, b) ∈ A(α, β) such that � can be written as �(p) = a(p−
x) + b for p ∈ [α, β], where a > 0 is its slope. By Lemma B.1, F(s) ≥ Hx,b(s; a)

for s ∈ [x, β]. By Lemmas A.7 and A.8, we have

(1 − β)Hx,b(β; ax,b) +
∫ β

x
Hx,b(s; ax,b)ds

≥ (1 − β)F(β) +
∫ β

0
F(s)ds

≥ (1 − β)F(β) +
∫ β

x
F(s)ds

≥ (1 − β)Hx,b(β; a) +
∫ β

x
Hx,b(s; a)ds.

Because Hx,b(s; · ) is strictly increasing when s > x , we immediately know that
a ≤ ax,b. Therefore, � ≤ φFx,b

. ��
Proof of Lemma 3 for 1/2 < β < 1. The idea is similar to the previous proof. We can
focus on linear � with positive slope a > 0 and �(β) > 0. Then � must intersect the
set {(α, b)|0 < b ≤ a}∪ {(x, 0)|α ≤ x < β} at some point (x, b) and � can be written
as �(p) = a(p − x) + b for some a > 0.

Suppose (x, b) /∈ A(α, β). If α < 1 − β, this can occur only if x > 1 − β and
b = 0. Then

�(x) = 0 < φF1−β,0
(x)

and

�(β) ≤ φF (β) ≤ 1

2
= φF1−β,0

(β),

together implies � ≤ φF1−β,0
over [x, β]. Because � < 0 ≤ φF1−β,0

over [α, x), we
know � ≤ φF1−β,0

over [α, β]. Similarly, if 1−β ≤ α, (x, b) /∈ A(α, β) implies either
(x, b) = (α, b) for some b < b̂ or (x, b) = (x, 0) for some x > α. In both cases, we

can show � ≤ φFα,b̂
over [α, β].
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Suppose (x, b) ∈ A(α, β). By Lemmas A.7 and B.2, we know

1

2
≥(1 − β)F(β) +

∫ β

0
F(s)ds

≥(1 − β)G(β) +
∫ 1

2

x
Hx,b(s; a)ds +

∫ β

1
2

G(s)ds

=(1 − x)

[
1 −

√
x(1 − β)

(1 − x)β

]
a + 1

2

[
2 + (1 − 2x)

√
1 − β√

x(1 − x)β

]
b, (B.3)

where G is defined in (B.1). Comparing (B.3) and (A.6), we immediately know a ≤
ax,b, implying � ≤ φFx,b

. This completes the proof. ��

Appendix C Proof of Proposition 2

The next lemma proves that we can approximate the worst-case payoff function
from an information structure by the linear functions below its contingent payoff
function. This lemma, when combined with Lemma 3, will prove our main result,
Proposition 2.

Lemma C.1 Suppose F ∈ F . For every p ∈ (α, β), we have23

co[α,β]φF (p) = sup
linear �:[α,β]→R,

�≤φF over [α,β]

�(p).

Proof Because co[α,β]φF is convex by definition and because p ∈ (α, β) is interior,
the left derivative of co[α,β]φF at p exists. Denote this derivative by a ∈ R. Define
�p(x) ≡ a(x − p) + co[α,β]φF (p) for x ∈ [α, β]. For any x ∈ [α, β], we have
φF (x) ≥ co[α,β]φF (x) ≥ �p(x). In other words, � ≤ φF over [α, β]. Then, we have

co[α,β]φF (p) = �p(p) ≤ sup
linear �:[α,β]→R,

�≤φF over [α,β]

�(p).

The other direction of the above inequality is obvious. ��
We are now ready to prove our main result, Proposition 2.

Proof of Proposition 2 For any F ∈ F , Lemmas 3 and C.1 together imply

co[α,β]φF (π) = sup
linear �:[α,β]→R

�≤φF over [α,β]

�(π) ≤ max
(x,b)∈A

φFx,b
(π), ∀π ∈ (α, β).

23 If φF itself is convex, this result is standard. Moreover, this result holds more generally if φF is replaced
by any function f over [α, β] that is bounded from below.
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Because

V (π; [α, β]) = max
F∈F

co[α,β]φF (π)

by definition and

max
(x,b)∈A

φFx,b
(π) ≤max

F∈F
φF (π)

s.t. F is an LCPIS over [α, β],

we know

V (π; [α, β]) ≤max
F∈F

φF (π)

s.t. F is an LCPIS over [α, β].

Since the other direction of the inequality is obvious, we obtain our main result as
desired. ��

Appendix D Proofs of Propositions 3 and 4

Proof of Proposition 3 We prove Proposition 3 for the case α < β ≤ 1/2. The other
case is similar.

For notational simplicity, define f (x) = 2(1 − x)
[
1 −

√
x(1−β)
(1−x)β

]
and g(x) =[

2 + (1−2x)
√
1−β√

x(1−x)β

]
to be the coefficients of ax,b and b in (A.6), respectively. That is,

(A.6) can be written as

f (x)ax,b + g(x)b = 1.

We suppress β from notation f and g for simplicity too. The whole proof is divided
into several steps.

Step 1: {φFα,b }b∈[0,α] all intersect at

π̂ ≡ α + f (α)

g(α)
∈ (α, β). (D.1)

Pick any b ∈ [0, α). Consider the intersection π of φFα,α
and φFα,b

:

αα,α(π − α) + α = αα,b(π − α) + b.
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Because aα,α = (1 − g(α)α)/ f (α) and aα,b = (1 − g(α)b)/ f (α), it is easy to see

π = α + f (α)

g(α)
, (D.2)

which is independent of b.
Step 2: φFα,0

(π̂) > φFx,0
(π̂) for x ∈ (α, β).

It suffices to consider x ∈ (α, π̂). Let (ã, b̃) be the solution to the following system
of linear equations:

f (α)ã + g(α)b̃ = 1,

ã(x − α) + b̃ = 0.
(D.3)

From the same argument as in Step 1, we know �(p) ≡ ã(p−α)+ b̃ also intersects
{φFα,b }b∈[0,α] at π̂ , which implies φFα,0

(π̂) = �(π̂). Because x < π̂ , we immediately
know that b̃ < 0.

Because � and φFx,0
intersect at (x, 0), to show �(π̂) > φFx,0

(π̂), it suffices
to show �(α) < ax,0(α − x), or equivalently b̃ < ax,0(α − x). From (D.3),
b̃ = ( f (α)/(α − x) + g(α))−1. From (A.6), ax,0 = 1/ f (x). Therefore, to show
b̃ < ax,0(α − x), it is equivalent to showing that

1
f (α)
α−x + g(α)

<
α − x

f (x)
.

Rearranging, it is equivalent to

f (x) > f (α) − g(α)(x − α).

For this inequality, it suffices to show f ′(x̃) > −g(α) for x̃ > α. This is indeed
true because

f ′(x̃) = −2 − (1 − 2x̃)
√
1 − β√

x̃(1 − x̃)β
= −g(x̃) > −g(α).

Step 3: Fα,α is the unique solution to (11) for π ∈ (α, π̂), and {Fα,b}b∈[0,α] are
solutions for π = π̂ .

This is a direct implication of Steps 1 and 2.
Step 4: for every π ∈ (π̂, β), there is a unique solution x∗(π) ∈ (α, β) to

max
x∈[α,β)

φFx,0
(π). (D.4)
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We can focus on x ∈ [α, π), because φFx,0
(π) = 0 when x ≥ π . Because ax,0 =

1/ f (x), this maximization problem can be written as

max
x∈[α,π)

π − x

f (x)
.

It can be verified that the objective function is strictly concave. Ignoring the con-
straint x ∈ [α, π) and using f ′(x) = −g(x), the first order condition can be written
as

x∗(π) + f (x∗(π))

g(x∗(π))
= π.

Clearly x∗(π) < π . Because π > π̂ , applying (D.1) yields

x∗(π) + f (x∗(π))

g(x∗(π))
> α + f (α)

g(α)
.

Because x+ f (x)/g(x) is strictly increasing,we know x∗(π) > α. Therefore, x∗(π) ∈
(α, β) is the unique solution to (D.4). Moreover, x∗(π) is strictly increasing.

Step 5: Fx∗(π),0 is the unique solution to (11) for π ∈ (π̂, β).
By Step 1, for every b ∈ (0, α], φα,b(π) < φα,0(π) for all π ∈ (π̂, β). So

{Fα,b}b∈(0,α] are not optimal for π ∈ (π̂, β). Then Fx∗(π),0 is the unique solution to
(11) for π ∈ (π̂, β) by Step 4. ��
Proof of Proposition 4 As in the proof of Proposition 3, we can also show that
{φFα,b }b̂≤b≤α

intersect at some π̂ ∈ (α, β). The desired result then immediately fol-
lows. ��

Appendix E Proofs of Corollaries 1 and 2

E.1 Proof of Corollary 1

Proof of Corollary 1 We can directly verify from Propositions 3 and 4. Here we provide
a simpler proof.

Fix π < β first. Consider {α̃n}n≥1 such that α̃n ↑ π . If π ≤ 1/2, let Fn be the KG
solution for prior α̃n , F α̃n ,α̃n . Then

α̃n = φF α̃n ,α̃n
(α̃n) ≤ φF α̃n ,α̃n

(π) ≤ V (π; [α̃n, β]) ≤ max
F∈F

φF (π) = π, ∀n.

Letting n → ∞ yields the desired result. If π > 1/2, let Fn be the information
structure that is completely uninformative for all n. There exists N such that α̃n > 1/2
for all n ≥ N . Then V (π; [α̃n, β]) = φFn (π) = 1/2 = maxF∈F φF (π) for all
n ≥ N .
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Fix α < π . Consider {β̃n}n≥1 such that β̃ ↓ π . Suppose π ≤ 1/2 first. There

exists N such that xn ≡ π −
√

β̃n − π ∈ (α, π) for n ≥ N . Note xn ↑ π and

(π − xn)/(β̃n − xn) ↑ 1. Let Fn be the KG solution for belief xn for n ≥ N . Then,
for all n ≥ N ,

co[α,β̃n ]φ
Fn (π) = φFn (β̃n)

β̃n − xn
(π − xn) =

[
1 − 2xn
2(1 − xn)

(β̃n − xn) + xn

]
π − xn

β̃n − xn
.

Since co[α,β̃n ]φ
Fn (π) ≤ V (π; [α, β̃n]) for all n ≥ N , we have

π = lim
n→∞ co[α,β̃n ]φ

Fn (π) ≤ lim
n→∞ V (π; [α, β̃n]) ≤ max

F∈F
φF (π) = π,

as desired. Suppose π > 1/2. Let Fn be the completely uninformative information
structure for all n. Then, for all n,

co[α,β̃n ]φ
Fn (π) =

⎧⎨
⎩

1
2

β̃n−1/2

(
π − 1

2

)
, if α < 1

2 ,

1
2 , if α ≥ 1

2 .

Therefore,

1

2
= lim

n→∞ co[α,β̃n ]φ
Fn (π) ≤ lim

n→∞ V (π; [α, β̃n]) ≤ max
F∈F

φF (π) = 1

2
,

as desired. ��

E.2 Proof of Corollary 2

For Corollary 2, it is crucial to understand how the optimal information structure
changes as α and β change. To indicate the dependence and to avoid confusion, in
what follows, we will explicit write out α and β in the notation of some of the key
variables we identified in the previous sections.

In particular, let π̂(α, β) be the prior cut-off identified in Propositions 3 and 4. Its
formula is given in (D.2). For the cases α < β ≤ 1/2 and α < 1 − β < 1/2 < β, we
will frequently refer to the dominant LCPIS of the form Fx,0 for (x, 0) ∈ A(α, β).
Since such LCPIS depends on the value of β, we will explicitly write Fx,0

β . We also

write ax,0β to denote the slope of φ
Fx,0

β . Similarly, let b̂(α, β) be the b̂ identified in
Lemma 2 for the case 1 − β ≤ α < 1/2 < β. Its formula is given in (A.4). In

this case, we also write Fα,b̂(α,β)
β and aα,b̂(α,β)

β to denote the associated LCPIS and
the corresponding slope. An exception is the KG solution for belief α. Because it is
independent of β, we will still write it as Fα,α .

To prove Corollary 2, we need the following two lemmas.

Lemma E.1 For any β, π̂( · , β) is strictly increasing over (0,min{β, 1/2}). For any
α < 1/2, π̂(α, · ) is strictly increasing over (α, 1).
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Proof This is because

∂π̂(α, β)

∂α
= (1 − α)

√
α(1 − α)√

β(1 − β)
[√

1 − β − 2a
√
1 − β + 2

√
α(1 − α)β

]2 > 0,

∂π̂(α, β)

∂β
=

√
β(1 − β)

[√
1−α
α

−
√

1−β
β

]
[√

1 − β − 2a
√
1 − β + 2

√
α(1 − α)β

]2 > 0.

��

Lemma E.2 For any β > 1/2, the function α �→ aα,b̂(α,β)
β is strictly decreasing over

(1− β, 1/2). For any α < 1/2, the function β �→ aα,b̂(α,β)
β is strictly decreasing over

(1 − α, 1).

Proof This is because

∂aα,b̂(α,β)
β

∂α
=

√
β(1 − β)

[√
1−α
α

−
√

β
1−β

]

2α2(1 − β)2
√

(1−α)β
α(1−β)

[√
(1−α)β
α(1−β)

− 1
]3 < 0,

∂aα,b̂(α,β)
β

∂β
=

−(1 − 2α)
√

α(1 − α)

[√
1−α
α

+
√

β
1−β

]

2α2(1 − β)2
√

(1−α)β
α(1−β)

[√
(1−α)β
α(1−β)

− 1
]3 < 0.

��

We divide the proof of Corollary 2 into two parts for clarity.

Proof of Part (i) of Corollary 2 Fix π < β. We discuss four cases.
Case 1: β > 1/2 and π ≥ π̂(1/2, β).
Because π̂(1/2, β) > 1/2, we know π > 1/2 in this case. Because π̂( · , β) is

strictly increasing over (0, 1/2), we know π > π̂(α, β) for all α ∈ (0, 1/2). From
Propositions 3 and 4, we have

V (π; [α, β]) =

⎧⎪⎨
⎪⎩

max
x∈[α,1−β] φ

Fx,0
β (π), if α ∈ (0, 1 − β),

φ
Fα,b̂(α,β)

β (π), if α ∈ [1 − β, 1/2).

For α ∈ [1 − β, 1/2), we can write

φ
Fα,b̂(α,β)

β (π) = aα,b̂(α,β)
β (π − β) + 1

2
,
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since φ
Fα,b̂(α,β)

β (β) = 1/2 by Lemma 2. By Lemma E.2, aα,b̂(α,β)
β is strictly decreasing

in α over (1−β, 1/2). Therefore, φFα,b̂(α,β)
β (π) is strictly increasing over (1−β, 1/2),

so is V (π; [ · , β]).
At α = 1 − β, the optimal information structure is F1−β,b̂(1−β,β)

β = F1−β,0
β since

b̂(1 − β, β) = 0. Therefore, for all α ∈ (0, 1 − β),

V (π; [α, β]) = max
x∈[α,1−β] φ

Fx,0
β (π) ≥ φ

F1−β,0
β (π)=V (π; [1 − β, β])≥V (π; [α, β]),

where the last inequality comes from the fact that V (π; [ · , β]) is weakly increasing.
Therefore, V (π; [α, β]) = V (π; [1 − β, β]) for all α < 1 − β.

Let α̂ = 1 − β. We have shown that V (π; [ · , β]) is constant over (0, α̂) and is
strictly increasing over (α̂, 1/2).

Case 2: β > 1/2 and π̂(1 − β, β) ≤ π < π̂(1/2, β).
Because π̂(1 − β, β) = (3β − 1)/(4β − 1) ≥ 1/2, we know π ≥ 1/2 too in

this case. Because π̂( · , β) is strictly increasing over (0, 1/2), there exists a unique
α̃ ∈ [1−β, 1/2) such that π̂(α̃, β) = π . Therefore, by Propositions 3 and 4, we have

V (π; [α, β]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
x∈[α,1−β] φ

Fx,0
β (π), if α ∈ (0, 1 − β),

φ
Fα,b̂(α,β)

β (π), if α ∈ [1 − β, α̃),

φFα,α
(π), if α ∈ [α̃, 1/2).

Because φFα,α
can be written as

φFα,α

(π) =
1
2 − α

1 − α
(π − 1) + 1

2
,

we know φFα,α
(π) is strictly increasing over [α̃, 1/2), so is V (π; [ · , β]). Moreover,

we can use a similar argument as the previous case to show thatV (π; [ · , β]) is constant
over (0, 1 − β) and is strictly increasing over [1 − β, α̃).

Again, let α̂ = 1−β. We have shown that V (π; [ · , β]) is constant over (0, α̂) and
is strictly increasing over (α̂, 1/2).

Case 3: β > 1/2 and π < π̂(1 − β, β).
Similarly as Case 2, there exists a unique α̂ < min{π, 1−β} such that π̂ (α̂, β) = π .

By Propositions 3 and 4, we know

V (π; [α, β]) =
⎧⎨
⎩

max
x∈[α,1−β] φ

Fx,0
β (π), if α ∈ (0, α̂),

φFα,α
(π), if α ∈ [α̂,min{π, 1/2}).

Similarly as above, we know V (π; [ · , β]) is strictly increasing over [α̂,min{π, 1/2}).
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At α = α̂, we know φF α̂,α̂
(π) = φ

F α̂,0
β (π) because π = π̂(α̂, β). Therefore, we

can again show that V (π; [ · , β]) = V (π; [α̂, β]) for all α < α̂. Hence, V (π; [ · , β])
is constant over (0, α̂) and is strictly increasing over (α̂, 1/2).

Case 4: β ≤ 1/2.
Similarly as Case 3, there exists a unique α̂ < π such that π̂(α̂, β) = π . By

Propositions 3 and 4, we know

V (π; [α, β]) =
⎧⎨
⎩

max
x∈[α,1−β] φ

Fx,0
β (π), if α ∈ (0, α̂),

φFα,α
(π), if α ∈ [α̂, π).

Using the same arguments as in Case 3, we can show that V (π; [ · , β]) is constant
over (0, α̂) and is strictly increasing over (α̂, 1/2), completing the proof. ��
Proof of Part (ii) of Corollary 2 Fix α < 1/2 and α < π . Because π̂(α, π) < π ,
limβ↑1 π̂(α, β) = 1 and π̂(α, · ) is strictly increasing by Lemma E.1, there exists
a unique β̂ ∈ (π, 1) such that π̂(α, β̂) = π . When β > β̂, we have π < π̂(α, β). By
Propositions 3 and 4, we know the optimal information structure is Fα,α in this case
and thus V (π; [α, β]) = φFα,α

(π) for all β > β̂. Because Fα,α is independent of β,
we know V (π; [α, · ]) is a constant over (β̂, 1).

It remains to show that V (π; [α, · ]) is strictly decreasing over (π, β̂). We consider
three cases.

Case 1: π ≤ π̂(α, 1/2).
In this case, β̂ ≤ 1/2. Because π̂(α, β) < π for all β ∈ (π, β̂), we know

V (π; [α, β]) = max
x∈[α,β)

φ
Fx,0

β (π), ∀β ∈ (α, β̂),

from Proposition 3. As in the proof of Proposition 3, we can also write

V (π; [α, β]) = max
x∈[α,π ] a

x,0
β (π − x), ∀β ∈ (α, β̂).

Because

ax,0β = 1

2(1 − x)
[
1 −

√
x(1−β)
(1−x)β

]

from (A.6), it is easy to see that ax,0β is strictly decreasing in β. Therefore, V (π; [α, · ])
is strictly decreasing over (π, β̂).

Case 2: π̂(α, 1/2) < π < π̂(α, 1 − α).
In this case, 1/2 < β̂ < 1− α, or equivalently α < 1− β̂ < 1/2 < β̂. If π < 1/2,

we have

V (π; [α, β]) =
⎧⎨
⎩

max
x∈[α,β)

ax,0β (π − x), if β ∈ (π, 1/2],
max

x∈[α,1−β] a
x,0
β (π − x), if β ∈ (1/2, β̂).
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If π ≥ 1/2, we have

V (π; [α, β]) = max
x∈[α,1−β] a

x,0
β (π − x), ∀β ∈ (π, β̂).

Similarly as Case 1, we can show V (π; [α, · ]) is strictly decreasing over (π, β̂).
Case 3: π̂(α, 1 − α) ≤ π .
In this case, 1− α ≤ β̂, or equivalently 1− β̂ ≤ α < 1/2 < β̂. Moreover, because

π̂(α, 1− α) = (2− 3α)/(3− 4α) ≥ 1/2, we know π ≥ 1/2. If π < 1− α, we have

V (π; [α, β]) =
⎧⎨
⎩

max
x∈[α,1−β] a

x,0
β (π − x), if β ∈ (π, 1 − α),

φ
Fα,b̂(α,β)

β (π), if β ∈ [1 − α, β̂).

If π ≥ 1 − α, we have

V (π; [α, β]) = φ
Fα,b̂(α,β)

β (π), ∀β ∈ (π, β̂).

Similarly as the previous cases, we can show that V (π; [α, · ]) is strictly decreasing
over (π, 1− α) if π < 1− α. What is left is to show that it is strictly decreasing over
(max{π, 1 − α}, β̂). Pick β1, β2 ∈ (max{π, 1 − α}, β̂) and β1 < β2. We can write

V (π; [α, β1]) = φ
F

α,b̂(α,β1)

β (π̂(α, β1)) + aα,b̂(α,β1)
β (π − π̂(α, β1)),

V (π; [α, β2]) = φ
F

α,b̂(α,β2)

β (π̂(α, β1)) + aα,b̂(α,β2)
β (π − π̂(α, β1)).

Because (1) φ
F

α,b̂(α,βk )

βk (π̂(α, βk)) = φFα,α
(π̂(α, βk)) for k = 1, 2 by the definition of

π̂ , (2) φ
F

α,b̂(α,β2)

β2 crosses φFα,α
from below, and (3) π̂(α, β1) < π̂(α, β2) by Lemma

E.1, we have

φ
F

α,b̂(α,β1)

β1 (π̂(α, β1)) = φFα,α

(π̂(α, β1)) > φ
F

α,b̂(α,β2)

β2 (π̂(α, β1)). (E.5)

Because π = π̂(α, β̂) > π̂(α, β1) and a
α,b̂(α,β1)
β1

> aα,b̂(α,β2)
β2

, we also have

aα,b̂(α,β1)
β1

(π − π̂(α, β1)) > aα,b̂(α,β2)
β2

(π − π̂(α, β1)). (E.6)

Combining (E.5) and (E.6), we obtain

V (π; [α, β1]) > V (π; [α, β2]),

completing the proof. ��
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