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Abstract. Federated learning (FL) has great potential for coalescing
isolated data islands. It enables privacy-preserving collaborative model
training and addresses security and privacy concerns. Besides booming
technological breakthroughs in this field, for better commercialization of
FL in the business world, we also need to provide sufficient monetary
incentives to data providers. The problem of FL incentive mechanism
design is therefore proposed to find out the optimal organization and
payment structure for the federation. This problem can be tackled by
game theory.

In this chapter, we set up a research framework for reasoning about FL
incentive mechanism design. We introduce key concepts and their mathe-
matical notations specified under the FML environment, hereby propos-
ing a precise definition of the FML incentive mechanism design problem.
Then, we break down the big problem into a demand-side problem and
a supply-side problem. Based on different settings and objectives, we
provide a checklist for FL practitioners to choose the appropriate FL
incentive mechanism without deep knowledge in game theory.

As examples, we introduce the Crémer-McLean mechanism to solve
the demand-side problem and present a VCG-based mechanism, PVCG,
to solve the demand-side problem. These mechanisms both guarantee
truthfulness, i.e., they encourage participants to truthfully report their
private information and offer all their data to the federation. Crémer-
McLean mechanism, together with PVCG, attains allocative efficiency,
individual rationality, and weak budget balancedness at the same time,
easing the well-known tension between these objectives in the mechanism
design literature.
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1 Introduction

In most industries, data are segregated into isolated data islands, among which
direct data sharing is restricted by laws and regulations such as the General Data
Protection Regulation (GDPR) [6]. Federated learning (FL) [12] has emerged in
recent years as an alternative solution to train AI models based on distribut-
edly stored data while preserving data privacy. Commercial FL platforms have
been developed, e.g., TensorFlow Federated (TFF) from Google and FATE from
WeBank. Industries such as finance, insurance, telecommunications, healthcare,
education, and urban computing have great potential to benefit from FL tech-
nologies.

In real application scenarios of FL, where data providers are profit-seeking
business entities, FL may not be economically viable because of the free rider
problem, i.e., a rational data provider may hold back its data while expecting
others to contribute all their data to the federation. Without proper incentives,
it is hard to prevent such free-riding activities because the FL model, as a virtual
product, has characteristics of club goods, i.e., it is non-rivalrous in consumption.

In order to incentivize data providers to offer their best datasets to federated
learning, we need to pay data providers enough monetary reward to cover their
costs. The marginal monetary reward for contributing more data should be no
less than the marginal cost hence incurred. Also, we aim to maintain a balanced
budget and optimize for social welfare. At least three sources of information
asymmetry intertwined in this problem: 1) the datasets owned by each data
provider, 2) costs incurred to each data provider, and 3) model users’ valuations
on the trained FL model. An FL incentive mechanism, formulated as a function
that calculates payments to participants, is designed to overcome these informa-
tion asymmetries and to obtain the above-mentioned objectives. The problem of
FL incentive mechanism design is to find the optimal FL incentive mechanism.

In this chapter, we first propose a game-theoretic model for analyzing the
FL incentive mechanism design problem. We provide a checklist to specify het-
erogenous game settings and mechanism design objectives, together with four
benchmark theorems that help FL practitioners to choose the appropriate FL
incentive mechanism. Then, under our research framework, we provide two exam-
ples of FL incentive mechanisms, one on the demand side and the other on the
supply side. The proposed Crémer-McLean mechanism and Procurement-VCG
(PVCG) mechanism encourage FL participants to truthfully report their type
parameters and offer their best datasets to the federation. These mechanisms also
provide theoretical guarantees for incentive compatibility, allocative efficiency,
individual rationality, and weak budget balancedness.
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2 Problem Setup

In this section, we set up a game-theoretic environment for our following dis-
cussions. For readers unfamiliar with game theory and mechanism design, this
section also provides necessary background knowledge.

2.1 The Game-Theoretic Environment

Fig. 1. The circular flow diagram of federated learning.

The environment of FL incentive mechanism design is set up as follows:

– There exists a set of n data providers, denoted by N = (0, . . . , n − 1), and
another set of m model users, denoted by M = (n, . . . , n + m − 1);

– Each data provider i ∈ N owns a dataset d̄i. It claims it owns a dataset d̂i.
The federation accepts a dataset di ≤ d̂i from this data provider. We call
ηi = di � d̂i the acceptance ratio, where � denotes element-wise division.

– Trained on datasets d = (d0, . . . , dn−1) from all data providers, the usefulness
of the federated model is Q(d). Model users may be granted limited access to
the federated model such that the usefulness of the federated model to model
user j is κjQ(d), where κj is called the access permission.

– Each data provider i ∈ N has a cost type γi ∈ Γi. Its cost of contributing
data di is c(di, γi). The collection of cost types of all data providers forms the
cost type profile γ = (γ0, . . . , γn). Data provider i may report a different cost
type γ̂i.
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– Each model user j ∈ M has a valuation type θj ∈ Θj . Its valuation on
the trained federated model is w(κjQ(d), θj) = v(d, κj , θj). The collection
of valuation types of all model users forms the valuation type profile θ =
(θn, . . . , θn+m−1). Model user j may report a different valuation type θ̂j .

– The payment to data provider i ∈ N is pi ≥ 0. The payment to model user
j ∈ M is pj ≤ 0. We denote ps = (p0, . . . , pn−1) and pd = (pn, . . . , pn+m−1).
The federation income is I = −∑n+m−1

j=n pj ; the federation expenditure is
E =

∑n−1
i=0 pi; the federation profit is P =

∑n+m−1
l=0 pl.

– Participants’ preferences are represented by quasi-linear utility functions
ui(·) = pi(·) − ci(·), i ∈ N and uj(·) = pj(·) + vj(·), j ∈ M .

– The social effect of federated learning is measured by social surplus, defined
as S(·) =

∑n+m−1
j=n vj(·) − ∑n−1

i=0 ci(·), which includes consumer surplus Sd =
∑n+m−1

j=n vj(·) and producer surplus Sd = −∑n−1
i=0 ci(·).

– There is user-defined unfairness functions �s(ps, c) and �d(ps,v) that mea-
sures the unfairness among data providers and model users.

Figure 1 illustrates the flows of economic resources in this federated learning
game. Table 1 lists the mathematical symbols.

Table 1. List of mathematical symbols

Symbol Meaning

i Index of data provider

j Index of model user

d̄i, d̂i, or di Owned/claimed/accepted dataset

Q(d) Usefulness of federated model

γi or γ̂i True/reported cost type

θj or θ̂j True/reported valuation type

pi, pj Payment to participants

ηi(·) Acceptance ratio of datasets

κj(·) Access permission to the federated model

c(di, γi) Individual cost function

v(d, κj , θj) Individual valuation function

u(·) Utility function

I(·), E(·), P (·) Federation income/expenditure/profit

S(·), Sd(·), Ss(·) Social surplus/consumer surplus/producer surplus

�s(·), �d(·) Unfairness functions

2.2 Definition of the FL Incentive Mechanism Design Problem

With these concepts and notations introduced so far, we present a formal defi-
nition for the problem of FML incentive mechanism design.
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Definition 1 (FL Incentive Mechanism Design). FL incentive mechanism
design is to design the optimal ps(·), η(·), pd(·), κ(·), as functions of claimed d̂

and reported γ̂, θ̂, in order to achieve a set of objectives in Sect. 2.3.

There are three sources of intertwined information asymmetry, d̂, γ̂ and θ̂, in
the FL incentive mechanism design problem. When all variables are considered
simultaneously, this problem becomes extremely complicated. As a tradition
in the economic literature, we separate this big problem into a demand-side
subproblem and a supply-side sub-problem. Formally, we introduce the following
assumption:

Assumption 1 (Separation between Data Supply and Model
Demand). The data supply market and the model demand market are sepa-
rated. When an FL participant is both a data provider and a model user, its
decision as a data provider does not affect his decision as a model user, or vice
versa.

With Assumption 1, we can define the two subproblems as follows.

Definition 2 (Supply-Side FL Incentive Mechanism Design). Given
that the federation Income I(Q) and the model quality Q(d̂ � η) are exoge-
nous functions, the supply-side FL incentive mechanism design is to design
the optimal pi(d̂, γ̂) and ηi(d̂, γ̂), i = 1, . . . , n, as functions of claimed datasets
d̂i, i = 0, . . . , n − 1 and reported cost types γi, i = 1, . . . , n, in order to achieve
some desirable objectives in Sect. 2.3.

Definition 3 (Demand-Side FL Incentive Mechanism Design). Given
that the model quality Q is an exogenous constant, the demand-side FL incentive
mechanism design is to design the optimal pj(θ̂) andκj(θ̂), j = 1, . . . , m, as
functions of reported benefit types θ̂, j = 1, . . . ,m, in order to achieve some
desirable objectives in Sect. 2.3.

2.3 Objectives of FL Incentive Mechanism Design

Below is a list of desirable properties of FL incentive mechanism design. For
detailed explanations of these objectives, refer to [10].

– (Incentive Compatibility, IC) IC is attained if in equilibrium, all participants
report their types truthfully, i.e., θ̂ = θ. Different types of equilibriums cor-
respond to different IC conditions, which can be one of Nash Incentive Com-
patibility (NIC), Dominant Incentive Compatibility (DIC), Baysian Incentive
Compatibility (BIC), or Perfect Bayesian Incentive Compatibility (PBIC).

– (Individual Rationality, IR) A mechanism is individually rational (IR) if this
mechanism does not make any player worse off than if he quits the federation,
i.e.,

ui(d̂, γ̂) ≥ 0,∀i ∈ N and uj(θ̂) ≥ 0,∀j ∈ M. (1)

In games of incomplete information, IR can be ex-ante IR, interim IR or
ex-post IR.
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– (Budget Balance, BB) A mechanism is weakly budget balanced (WBB) if for
all feasible outcomes, the sum of payments is less than or equal to zero. i.e.,

n+m−1∑

l=1

pl(d̂, γ̂, θ̂) ≤ 0,∀d̂, γ̂, θ̂. (2)

It is strongly budget balanced (SBB) if the equity holds. In games of incomplete
information, BB can be ex-ante BB, interim BB or ex-post BB.

– (Social Optimization) social optimization can be social surplus maximization
(SSM) when social surplus is maximized or profit maximization (PM) if the
federation profit is maximized. Social surplus maximization implies allocative
efficiency (AE).

– (Fairness) We desire to minimize the unfairness function.

3 Specifications of FL Incentive Mechanisms

3.1 Non-standard Game Settings

Besides game settings in Sect. 2.2, several non-standard game settings also need
to be specified when we design FL incentive mechanisms. These non-standard
game settings include:

– (Level of Information Asymmetry) On the demand side, there may be or may
not be information asymmetry on valuation types. On the supply side, there
may be a) no information asymmetry, b) information asymmetry on datasets
only, c) about cost types only, or d) about both.

– (Mode of System Evolution) If the FL game is played for only once, it corre-
sponds to a static mechanism. If the FL game is played repeatedly or param-
eters change over time, it corresponds to a dynamic mechanism.

– (Belief Updates) In a dynamic FL game, as time passes by, agents update their
beliefs based on heuristic belief updates or Bayesian belief updates, according
to which agents update their information based on some heuristic rules or
Bayesian rules, respectively.

– (Controllable Parameters) The FL coordinator may determine ps(·), η(·),
pd(·), and κ(·),but in some situations, some of these parameters are not con-
trollable. For example, it may not be possible to set up access control on the
FML model so that κ(·) is not controllable, or it may not be possible to reject
datasets offered by data providers so that η(·) is not controllable. Also, there
are cases where price discrimination is not possible so that the unit price of
data/model services has to be the same for all data providers/model users.

– (Functional Forms) On the supply side, exact forms of the federation income
function I(Q), the model quality function Q(d), and the individual cost func-
tions c(di, γi) need to be specified. On the demand side, the form of the
individual valuation function w(κjQ, θj) need to be specified.
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3.2 Measures of Objectives

As a general rule, objectives in Sect. 2.3 cannot be attained simultaneously, so
we would like to know how well each objective is achieved by a given FL incentive
mechanism. There are also cases where the constraints of some objectives are
approximately achieved. The performance of an FL incentive mechanism on
achieving these objectives can be evaluated according to the following measures.

– (Data offering rate, DOR) DOR is defined as the total data offered by all
data providers to the total data owned by all data providers, i.e.,

DOR =
∑n−1

i=0 d̂i
∑n−1

i=0 d̄i

. (3)

The data offering rate varies from 0.0 to 1.0, with 1.0 indicating all data being
offered. When a payment scheme is incentive-compatible, the data offering
rate is 1.0.

– (Individual rationality index, IRI) Rational data providers are not expected
to stay in the federation if their costs cannot be covered by payments.
The individual rationality indicator IRi for data provider i is defined as IRi =
1 if pi − ci ≥ 0 and IRi = 0 otherwise.
The ideal case is that the payment scheme satisfies individual rationality
for all participants. For general cases, we measure the individual rationality
index (IRI), defined as the average of individual rationality indicators, i.e.,
IRI =

∑n−1
i=0 wi × IRi, where wi, i ∈ N are user-defined weights for the

relative importance of data owner I, e.g., wi = di∑n−1
l=0 dl

.
The individual rationality index varies from 0.0 to 1.0, with 1.0 indicating
individual rationality constraints satisfied for all participants.

– (Budget surplus margin, BSM) The budget surplus is the difference between
the total income received from model users and the total payments paid
to data owners. In practice, the budget surplus is the profit made by the
coordinator. Budget surplus margin is the ratio of the budget surplus to total
revenue of the federation, i.e.,

BSM =
−∑n+m−1

j=n pj − ∑n−1
i=0 pi

−∑n+m−1
j=n pj

. (4)

The budget surplus margin varies from −∞ to 1.0, with 0.0 indicating a
break-even point, and positive/negative values indicating net profits/losses,
respectively.

– (Efficiency Index, EI) In federated learning, allocative efficiency is achieved
when social surplus is maximized. The efficiency index(EI) is the ratio of
realized social surplus to the maximum possible social surplus, i.e.,

EI =
S(d̂,γ,θ,η(d̂, γ̂, θ̂),κ(d̂, γ̂, θ̂))

maxη ,κ S(d̄,γ,θ,η,κ)
(5)

EI varies from −∞ to 1.0, with 1.0 indicating allocative efficiency.
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– (Fairness Index, FI) In FL, we want the payment of a unit of contributed
data to be the same for all data providers. We set the unfairness function to
be the variance of the normalized unit price, i.e., rescaled to [0.0, 1.0], i.e.,

�(ps,d) = V ar{ pi/di
∑n−1

i=0 pi/
∑n−1

i=0 di

}. (6)

The normalized unit price is invariant with the change of measure.
The fairness index (FI) is the realized unfairness function rescaled to [0.0, 1.0],
i.e.,

FI =
1

1 + �(ps,d)
, (7)

which varies from 0.0 to 1.0, with 1.0 indicating the absolute fairness.

Table 2. Checklist for specifications of FL incentive mechanisms

Game settings Specifications

Demand-side settings Information asymmetry on valuation types Yes/No

Access permission control on FL model Yes/No/Partial

Price discrimination Yes/No

Specification of individual valuation functions Specification

Supply-side settings Information asymmetry on datasets Yes/No

Information asymmetry on cost types Yes/No

Ability to reject data owners Yes/No/Partial

Price discrimination Yes/No

Specification of individual cost functions Specification

Specification of the federation income function Specification

Specification of the model quality function Specification

Other settings Mode of system evolution Static/Dynamic

Belief updates No/Heuristic/Bayesian

Objectives Measures

Objectives IC Data offering rate

IR Individual rationality index

BB Budget Surplus Margin

Social optimization Efficiency index

Fairness Fairness index

3.3 A Checklist for FL Incentive Mechanisms

Designing FL incentive mechanisms often requires deep knowledge in game the-
ory, a field unfamiliar to most FL practitioners. Nevertheless, for FL practition-
ers to apply an FL incentive mechanism, they only need to make sure the game
settings of the targeted mechanism is a good approximation of the real-world
scenario. Besides, they would like to know how well the mechanism achieves the
objectives listed in Sect. 2.3. We recommend that a checklist of specifications,
e.g., Table 2, is provided with every FL incentive mechanism so that FL practi-
tioners can easily choose the right mechanism without understanding the inner
workings of these mechanisms.
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3.4 Benchmarks for Choosing FL Incentive Mechanisms

When choosing FL incentive mechanisms, simpler game settings and fewer objec-
tives are preferred. There is well-known tension between the multiple objectives
listed in Sect. 2.3 [8]. We can prove that when game settings become more com-
plicated or more objectives are optimized, the expected social surplus attained by
the optimal mechanism is reduced. Formally, we have the following benchmark
theorems. For proofs of these theorems, refer to [4].

Theorem 1 (More controllable parameters, better social optimiza-
tion). The more parameters can be controlled by the FL coordinator, the larger
is the expected social surplus attained by the optimal FL incentive mechanism.

Theorem 2 (Less information asymmetry, better social optimization).
When the IC constraint is concerned, the more accurate is the prior belief on

d̄, γ and θ, the larger is the expected social surplus attained by the optimal FL
incentive mechanism.

Theorem 3 (More constraints, worse social optimization). The more
constraints (such as IC, IR, BB), the smaller is the expected social surplus
attained by the optimal FL incentive mechanism.

According to these theorems, it would always be helpful if the FL coordinator
can better estimate the datasets and type parameters of FL participants. Also,
objectives in Sect. 2.3 compete with each other. If an objective is not a con-
cern for an FL scenario, the FL coordinator should not choose an FL incentive
mechanism optimized for that objective.

4 A Demand-Side FL Incentive Mechanism -
Crémer-McLean Mechanism

In this section and the next section, we provide two examples of FL incentive
mechanisms, on the demand side and the supply side, respectively.

4.1 Crémer-McLean Theorem

The demand-side mechanism introduced in this section is an application of the
famous Crémer-McLean mechanism [5]. In order to apply Crémer-McLean mech-
anism, we put two assumptions on the prior distribution Prior(θ). For more
discussions on these assumptions, refer to [2].

Assumption 2 (Crémer-McLean condition). The prior distribution of θ
satisfies the “Crémer-McLean condition” if there are no j ∈ M , θj ∈ Θj and
λj : Θj\{θj} 	→ R+ for which

Prior(θ−j |θj) =
∑

θ
′
j∈Θj\{θj}

λ(θ
′
j)Prior(θ−j |θ′

j), ∀θ−j ∈ Θ−j . (8)
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The Crémer-McLean condition is often referred to as correlated types. To
understand this, one can understand agent j’s belief about other agents’ types
Prior(θ−j |θj) as a vector with as many entries as Θ−j has elements. Each θj cor-
responds to such a vector. The Crémer-McLean condition requires that none of
these vectors can be written as a convex combination of other vectors. Note that
the Crémer-McLean condition is obviously violated when agent j’s conditional
beliefs are independent of his type, i.e., all these vectors are identical.

The assumption of correlated types is reasonable for the FL scenario. It is
highly possible that when the FL model brings high value to one model user, it
also brings high value to other model users.

Assumption 3 (Identifiability condition). The prior distribution of θ
satisfies the “identifiability condition” if, for all other prior distributions
Prior′(θ) �= Prior(θ) such that Prior′(θ) > 0 for all θ ∈ Θ, there is at least
one model user j and one valuation type θj ∈ Θj such that for any collection of
nonnegative coefficients λ(θ

′
j), θ

′
j ∈ Θj, we have

Prior′(θ−j |θj) �=
∑

θ
′
j∈Θj

λ(θ
′
j)Prior(θ−j |θ′

j) (9)

for at least one θ−j ∈ Θ−j.

Intuitively, this condition says that for any alternative prior distribution
Prior′(θ) > 0, there is at least one agent and one type of that agent such that
this agent cannot randomize over reports in a way that makes the conditional
distribution of all other types under Prior′(θ) indistinguishable from the condi-
tional distribution of all other types under Prior(θ). In practice, we do not need
to worry about this assumption because identifiability is generic in the topologi-
cal sense, i.e., for almost all prior distributions, we can assume the identifiability
condition holds. We have the following proposition, of which the proof can be
found in [9].

Proposition 1 (Genericity of identifiability). Suppose there are at least
three agents (m ≥ 3). Also, if m = 3, then at least one of the agents has at least
three types. Then almost all prior distributions Prior(θ) are identifiable.

Provided Assumption 2 and 3, we can guarantee the existence of an interim
truthful and interim individual rational demand-side mechanism that attracts
full consumer surplus. Here, interim incentive compatibility means truth-telling
is superior to other strategies in expectation under the conditional prior distri-
bution of other agents’ types, i.e.,

EPrior(θ−j |θj)[w(κj(θj ,θ−j)Q, θj) + pj(θj ,θ−j)] (10)

≥EPrior(θ−j |θj)[w(κj(θ̂j ,θ−j)Q, θj) + pj(θ̂j ,θ−j)], ∀j ∈ M,θ ∈ Θ, θ̂j ∈ Θj ;

interim individual rationality means the expected utilities of all agents are non-
negative, under the conditional prior distribution of other agents’ types, i.e.,

EPrior(θ−j |θj)[w(κj(θj ,θ−j)Q, θj) + pj(θj ,θ−j)] ≥ 0, ∀j ∈ M,θ ∈ Θ. (11)
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The Crémer-McLean Theorem is:

Theorem 4 (Crémer-McLean Theorem). When the Crémer-McLean con-
dition and the identifiability condition hold for Prior(θ), for any decision
rule κ(θ̂), there exists an interim incentive compatible and interim individ-
ually rational payment rule p(θ̂) that extracts full consumer surplus, i.e.,
−∑n+m−1

j=n pj(θ̂) =
∑n+m−1

j=n w(κj(θ̂)Q, θj).

As an application of this theorem, we can set κj(θ̂) ≡ 1, i.e., every model
user gets full access permission to the FL model. In this case, w(κj(θ̂)Q, θj) =
w(Q, θj), and we can find an interim incentive compatible and interim individu-
ally rational payment rule p(θ̂) such that −∑n+m−1

j=n pj(θ̂) =
∑n+m−1

j=n w(Q, θj).
As an example, consider the following payment rule:

pj(θ̂) = −w(Q, θ̂j) + β[α − ln(Prior(θ̂−j |θ̂j)], (12)

where β and α are two constants. We can prove that when β is large enough,
pj(θ̂) is interim incentive compatible. To understand this, noticing that if model
user j reports a θ̂j lower than his true θj .

To see this, noticing that the Lagrange equation for model user j to maximize
its utility is

∂

∂Prior(θ̂−j |θ̂j)
{EPrior(θ̂−j |θj)

pj(θ̂) + λ[
∑

θ̂−j

Prior(θ̂−j |θ̂j) − 1]}

= −
∂EPrior(θ̂−j |θj)

w(Q, θ̂j)

∂Prior(θ̂−j |θ̂j)
− β · Prior(θ̂−j |θj)

Prior(θ̂−j |θ̂j)
+ λ = 0, (13)

where λ is the Lagrange multiplier for the constraint
∑

θ̂−j
Prior(θ̂−j |θ̂j) ≡ 1.

When β is large enough compared to
∂EPrior(θ̂ −j |θj)w(Q,θ̂j)

∂Prior(θ̂−j |θ̂j)
, solving the Lagrange

equation in Eq. 13 results in

Prior(θ̂−j |θj)

Prior(θ̂−j |θ̂j)

 λ

β
, ∀θ̂−j . (14)

Therefore, Prior(θ̂−j |θj) has to be equivalent to Prior(θ̂−j |θ̂j), i.e., θ̂−j = θ−j .
If we set α = EPrior(θ)ln[Prior(θ−j |θj)], the payment rule in Eq. 12 is ex-

ante individual rational and extracts full consumer surplus ex ante. We can
use automated mechanism design to find a Crémer-McLean mechanism that is
also ex-post individual rational and extracts full consumer surplus ex post, as
explained in the following sub-section.

4.2 Training Crémer-McLean Mechanism

The Crémer-McLean payments can be calculated by automated mechanism
design techniques, e.g., refer to [1]. The method presented in this section is
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slightly different from that in [1], compared to which our method extracts full
consumer surplus ex post instead of ex ante.

The Crémer-McLean payments p(θ) should simultaneously satisfy the three
constraints in the following equation set 15, corresponding to ex-post full con-
sumer surplus extraction, interim incentive compatibility and ex-post individual
rationality, respectively.

⎧
⎪⎨

⎪⎩

−∑n+m−1
j=n pj(θ) =

∑n+m−1
j=n w(Q, θj), ∀θ;

∑
θ ′

−j
[w(Q, θj) + pj(θj ,θ

′
−j)]Prior(θ′

−j |θj) ≥ 0, ∀j ∈ M, θj ∈ Θj ;
∑

θ ′
−j

[pj(θj ,θ
′
−j) − pj(θ̂j ,θ

′
−j)]Prior(θ′

−j |θj) ≥ 0, ∀j ∈ M, θj ∈ Θj .

(15)

Crémer-McLean Theorem guarantees that there is a solution p(θ) to Eq. 15.
In order to find such a solution, we can minimize the following LOSS in Eq.
16, because it is easy to see that p(θ) is a solution to Eq. 15 i.f.f. it minimizes
the LOSS in Eq. 16 to 0. With such a LOSS function, we can easily learn the
demand-side Crémer-McLean payments by applying standard backpropagation
algorithms.

LOSS = {
n+m−1∑

j=n

[w(Q, θj) + pj(θ)]}2 (16)

+
n+m−1∑

j=n

ReLu{−
∑

θ ′
−j

[w(Q, θj) + pj(θj ,θ
′
−j)]Prior(θ′

−j |θj)}

+
n+m−1∑

j=n

ReLu{−
∑

θ ′
−j

[pj(θj ,θ
′
−j) − pj(θ̂j ,θ

′
−j)]Prior(θ′

−j |θj)},

where θ,θ′, θ̂ are drawn randomly from the prior distribution of θ.

5 A Supply-Side FL Incentive Mechanism - PVCG

As a counterpart of Crémer-McLean mechanism, which is optimal on the demand
side, we introduce an optimal supply-side procurement auction in this section.
This proposed procurement auction, accompanied by the demand-side Crémer-
McLean mechanism, maximizes producer surplus by incentivizing data providers
to offer all their data to the federation and truthfully report their cost types.
For more discussions on PVCG, refer to [3].

As explained in Sect. 2.3. When designing the supply-side mechanism, we
assume the federation income I(Q) and the model quality Q(d̂�η) are exogenous
functions. For example, when Crémer-McLean mechanism is adopted on the
demand side, we know the federation income is:

I(Q) = −
n+m−1∑

j=n

pj(θ) =
n+m−1∑

j=n

w(κj(θ)Q, θj), (17)
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where θ is assumed to be an exogenous parameter, so we can ignore it when we
focus on the supply side. Because the federation income indirectly depends on
Q(d̂ � η), we also write I(d̂ � η) = I(Q(d̂ � η)).

5.1 The Procurement Auction

One can carry out the proposed procurement auction and compute the payments
to data providers by following the following steps.

Step 1. Data providers claim datasets to offer and bid on cost types
As the first step, every data provider submits a sealed bid for their respective

claimed datasets and cost types. The claimed dataset d̂i is the best dataset that
data provider i claims it can offer to federated learning. It may differ from the
dataset d̄i actually owned by data provider i. Similarly, the reported cost type
γ̂i may differ from the true cost type γi.

Step 2. The coordinator chooses the optimal acceptance ratios
Then, the coordinator decides how many data to accept from each data

provider. It chooses di ≤ d̂i, i = 0, . . . , n − 1 that maximize the social sur-
plus. Equivalently, the coordinator calculates the optimal acceptance ratio ηi ∈
[0, 1]dim(di) = di � d̂i such that di = d̂i � ηi, where [0, 1] denotes the interval
between 0 and 1.

The optimal acceptance ratios (η∗
0 , . . . , η∗

n−1) = η∗ are calculated according
to the following formula:

η∗ = argmaxη∈[0,1]dim(xi)×n{S(x̂ � η, γ̂)} (18)

= argmax
η∈[0,1]dim(di)×n

I(d̂ � η) −
n−1∑

i=0

ci(d̂i � ηi, γ̂i).

Because different (d̂, γ̂) results in different η∗, η∗ is written as η∗(d̂, γ̂). Cor-
respondingly, the maximum producer surplus is denoted by S∗(d̂, γ̂) = I(d̂ �
η∗(d̂, γ̂)) − ∑n−1

i=0 ci(d̂i � η∗
i (d̂, γ̂), γ̂i).

It is worth noting that although S∗(d̂, γ̂) and S(d,γ) both represent producer
surplus, they are different functions. The first parameter d in S(·) is the accepted
dataset, whereas the first parameter d̂ in S∗(·) is the claimed dataset. d and d̂

are related by d = d̂ � η∗.
Step 3. Data providers contribute accepted datasets to federated learning
In this step, data providers are required to contribute the accepted dataset

d̂�η∗ to federated learning. Since in the first step, data provider i has claimed the
ability to offer a dataset no worse than d̂i, if it cannot contribute d̂i �η∗

i ≤ d̂i, we
impose a high punishment on it. With the contributed datasets, data providers
collaboratively produce the output virtual product, bringing income I(d̂ � η∗)
to the federation.

Step 4. The coordinator makes transfer payments to data providers according
to the PVCG sharing rule
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In this final step, the coordinator pays data providers according to the PVCG
sharing rule. The PVCG payment

pi(·) = τi(·) + h∗
i (·) (19)

is composed of two parts, the VCG payment τi and the optimal adjustment
payment h∗

i . The VCG payment is designed to induce truthfulness, i.e., the
reported capacity limits d̂ and reported cost type γ̂ are equal to the true capacity
limits d̄ and true cost type γ. The adjustment payment is optimized so that ex-
post individual rationality and ex-post weak budget balancedness can also be
attained.

With η∗ calculated in Step 2, the VCG payment τi to data provider i is:

τi = S∗(d̂, γ̂) − S∗
−i(d̂−i, γ̂−i) + c(d̂i � η∗

i (x̂, γ̂))

= [I(d̂ � η∗(d̂, γ̂)) − I(d̂−i � η−i∗(d̂−i, γ̂−i))]

−
n−1∑

k=0, �=i

[c(d̂k � η∗
k(d̂, γ̂, θ̂), γ̂k) − c(d̂k � η−i∗

k (d̂−i, γ̂−i, θ̂), γ̂k)], (20)

where (d̂−i, γ̂−i) denotes the claimed datasets and the reported cost types
excluding data provider i. η−i∗ and S∗

−i(d̂−i, γ̂−i) are the corresponding optimal
acceptance ratios and maximum producer surplus. Note that η−i∗ is different
from η∗

−i: the former maximizes S(d̂−i � η−i, γ̂−i), whereas the latter is the
component of η∗ that maximizes S(d̂�η, γ̂). τ = (τ0, . . . , τn−1) is a function of
(d̂, γ̂), written as τ (d̂, γ̂).

The adjustment payment hi(d̂−i, γ̂−i) is a function of (d̂−i, γ̂−i). The optimal
adjustment payments (h∗

0(·), . . . , h∗
n−1(·)) = h∗(·) are determined by solving the

following functional equation (a type of equation in which the unknowns are
functions instead of variables; refer to [11] for more details):

n−1∑

i=0

ReLu[−(S∗(d,γ) − S∗
−i(d−i,γ−i)) − hi(d−i,γ−i)]

+ ReLu{
n−1∑

i=0

[(S∗(d,γ) − S∗
−i(d−i,γ−i) + hi(d−i,γ−i)] − S∗(d,γ)} (21)

≡ 0, ∀(d̄,γ) ∈ supp(Prior(d,γ)),

where supp(Prior(d,γ)) is the support of the prior distribution Prior(d,γ) of the
true parameters (d,γ). Support is a terminology from measure theory, defined as
supp(Prior(d,γ)) = {(d,γ)|Prior(d,γ) > 0}. In general, there is no closed-form
solution to Eq. 21, so we employ neural network techniques to learn the solution,
as is explained in the following sub-section.

Through rigorous mathematical derivation, we can prove that with some
reasonable assumptions, the PVCG payment rule thus calculated is dominant
incentive compatible, allocative efficient, ex-post individual rational, and ex-post
weak budget balanced. For detailed proofs of these properties, refer to [3].
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5.2 Learning the Optimal Adjustment Payments

We can prove that the solution h∗(·) to Eq. 21, if existing, is also a solution to
the following minimization problem:

h∗(·) = argminh(·)E(x̄,γ ,θ){LOSS}, (22)

where the expectation is over the prior distribution of (x̄,γ,θ). Here, we bring
back the valuation type θ because we want the adjustment payments applicable
to all possible θ. Note that different θ results in different federation income
function I(d̂ � η). Hence the maximum producer surplus also depends on θ.

LOSS is defined as

LOSS = Loss1 + Loss2 = 0, (23)

where

Loss1 =
n−1∑

i=0

ReLu[−(S∗(x̄,γ,θ) − S∗
−i(x̄−i,γ−i,θ))

− hi(x̄−i,γ−i,θ)] and (24)

Loss2 = ReLu[
n−1∑

i=0

[(S∗(x̄,γ,θ) − S∗
−i(x̄−i,γ−i,θ))

+ hi(x̄−i,γ−i,θ)] − S∗(x̄,γ,θ)]. (25)

This fact informs us that we can learn the optimal adjustment payments h∗(·)
by minimizing the expected LOSS function. Also, we know neural networks can
approximate arbitrary continuous functions to arbitrary precisions [7]. There-
fore, we construct n neural networks NETh

i , i ∈ N to approximate hi(·), i ∈ N .
Output nodes of these n networks, denoted by NETh

i .o, i ∈ N , are combined into
a single composite neural network in Fig. 2 with the loss function in Eq. 23–25.

Fig. 2. The structure of the composite neural network of PVCG
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The training data (d̄t,γt,θt), t = 0, 1, . . . , T are drawn from their prior dis-
tribution Prior(d̄,γ,θ) and T is the sample size. For the tth sample, τ t =
τ (d̄t,γt,θt), S∗t = S∗(d̄t,γt,θt), and S∗t

−i = S∗(d̄t
−i,γ

t
−i,θ

t). Since we only
need synthetic data to train this network, we can generate as many data as
needed. As a result, LOSS can be minimized to its theoretical minimum almost
perfectly in experiments.

Fig. 3. Training loss v.s. iterations (left) and PVCG payment v.s. reported capacity
limit & reported cost type (right)

To illustrate the effectiveness of this neural network method, we learned the
adjustment payments for a hypothetical scenario. We set the individual valuation
functions and individual cost functions as follows:

v(d) = θi

√
√
√
√n(

n−1∑

k=0

dk) and ci(di, γi) = γidi, i ∈ N. (26)

We report the experiment results for n = 10,m = 2, Prior(x̄i) =
Uniform[0, 5], i ∈ N , Prior(γi) = Uniform[0, 1], i ∈ N , and Prior(θj) = [0, 1], j ∈
M . We let NETh

i , i ∈ N each have three 10-dimensional hidden layers.
The loss curve is shown in the left figure of Fig. 3. The training loss fast

converges to 0, as expected. After we obtain the trained networks [NETh
i ], i ∈ N ,

we can use trained networks to calculate PVCG payments p(d̂, γ̂, θ̂) for any
reported (d̂, γ̂, θ̂). For illustration, we draw p0, the payment to data provider 0,
with respect to d̂0 and γ̂0 in the right figure in Fig. 3, fixing parameters of other
participants at d̂i ≡ 2.5, γ̂i ≡ 0.5, i ∈ N, �= 0, θ̂j ≡ 0.5, j ∈ M .

We can see that p0 increases with d̄0. This indicates that the more data
a data provider claim, the more data are accepted from this data provider;
hence, it receives higher payments. Also, p0 remains constant with γ0 when γ0 is
below a threshold and sharply drops to around 0 when γ0 passes the threshold.
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This implies that the payment to a data provider should only be affected by
its contribution to the federated learning process rather than its cost, but if a
data provider’s cost is too high, the optimal social choice is to exclude this data
provider from the federation and thus pay it nothing.

6 Summary

In this chapter, we set up a game-theoretic framework for studying FL incentive
mechanisms. We introduced the key concepts, mathematical symbols, definitions,
and key assumptions that are necessary for readers to understand the FL incen-
tive mechanism design problem and its objectives. Then, we suggest breaking
down the original complicated problem into two sub-problems: a demand-side
problem and a supply-side problem. We provide a checklist for FL practitioners
to quickly understand the specifications and objectives of any given FL incentive
mechanism so that real-world FL practitioners can choose the most appropriate
mechanism without understanding its internal workings.

As examples, we introduced two FL incentive mechanisms designed under our
proposed framework: the Crémer-McLean mechanism on the demand side and
a VCG-based procurement auction, PVCG, on the supply side. These mecha-
nisms both guarantee truthfulness, i.e., they encourage participants to truthfully
report their private information and offer all their data to the federation. The
Crémer-McLean mechanism, together with PVCG, attains allocative efficiency,
individual rationality, and weak budget balancedness at the same time, easing
the tension between these objectives.
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