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Abstract—In federated learning (FL), a federation distributedly trains a collective machine

learningmodel by leveraging privacy preserving technologies. However, FL participants

need to incur some cost for contributing to the FLmodels. The training and

commercialization of themodels will take time. Thus, there will be delays before the

federation could pay back the participants. This temporary mismatch between

contributions and rewards has not been accounted for by existing payoff-sharing

schemes. To address this limitation, we propose the FL incentivizer (FLI). It dynamically

divides a given budget in a context-aware manner among data owners in a federation by

jointly maximizing the collective utility while minimizing the inequality among the data

owners, in terms of the payoff received and the waiting time for receiving payoffs.

Comparisons with five state-of-the-art payoff-sharing schemes show that FLI attracts

high-quality data owners and achieves the highest expected revenue for a federation.

& IN TRADITIONAL MACHINE learning, the training

dataset is usually stored in a central entity. Data

need to be first collected from the data sources

in order to facilitate learning. The rapid develop-

ment of artificial intelligence (AI) has benefited

from large-scale training data in real-world
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application. As AI becomes increasingly ubiqui-

tous, nations are increasingly concerned about

AI governance and privacy protection. They

instituted new legislations such as the General

Data Protection Regulation for these purposes.

These new laws can potentially limit the devel-

opment of AI in the long run. Federated learning

(FL)1 was proposed to enable AI to continue

developing in this new regulatory landscape.

FL focuses on data integration methods, which

comply with privacy and security laws. Under FL,

data owners employ privacy protection techniques

such as homomorphic encryption, secret sharing,

and differential privacy to contribute model

parameters trained on their own datasets to a fed-

eration.1 The federation then combines these local

model parameters in order to train a more effec-

tive collectively machine learning model. This

allows the learning process to leverage the compu-

tational power of the data sources to train the

model in a process similar to crowdsourcing.2

Recently, Google has released the Tensorflow Fed-

erated toolkit to support the development FL

applications. The technology has been applied to

improve Google’s keyboard query suggestions by

crowdsourcing data frommillions of mobile phone

users in a privacy-preserving manner.

For a federation, data owners’ continued par-

ticipation in the FL process (through sharing of

encrypted model parameters) is key to its long-

term success. In essence, federations are com-

peting for data owners in order to build high-

quality models. Existing FL platforms such as

Tensorflow Federated and the Federated AI

Technology Enabler (FATE) assume that the fed-

eration already has a readily available group of

participating data owners and do not provide

any incentive mechanism to motivate participa-

tion. Such an assumption may not hold in prac-

tice, especially when data owners are companies

rather than individuals.

The contributions by data owners to a federa-

tion are used to build a machine learning model

which, in turn, can be used to generate revenue.

Thus, the federation can allocate part of the reve-

nue to data owners as incentives (see Figure 1).

The research question here is how to quantify

the payoff for each data owner in order to achieve

long-term systemic wellbeing. In order to address

this problem, a payoff-sharing scheme developed

specially for FL is needed.

In game theoretic research, a number of pay-

off-sharing schemes exist. Standard coalition

games with transferable utility.4 Auctions, lotter-

ies, and reputation can also be used to incentiv-

ize participation.5 Payoff-sharing games such as

the Labour union game and the Shapley game

share payoff among players according to their

marginal contribution in a coalition, while the

Fair-value game does so according to the mar-

ginal loss as a result of a player leaving the coali-

tion.6 However, in FL, participants need to incur

some cost for contributing to the FL models with

their local datasets. The training and commer-

cialization of the models will take time. Thus,

there will be some delays before the federation

has enough budget to pay back the participants.

This temporary mismatch between contribu-

tions and rewards has not been accounted for

by existing payoff-sharing schemes.

In order to sustain long-term stability in a data

federation and attract more high-quality data

owners over time, a fair incentivemechanism suit-

able for the FL context is needed.1 For this pur-

pose, we propose a dynamic payoff-sharing

Figure 1. Transfer of utility under the FL settings.3

*
https://www.tensorflow.org/federated
y
https://github.com/WeBankFinTech/FATE
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scheme—FL Incentivizer (FLI). It is a polynomial

time algorithm that can compute solutions for

payoff-sharing by instalment in order to achieve

fair treatment among data owners. It dynamically

divides a given budget among data owners in a

federation by jointly maximizing the collective

utility generated while minimizing the inequality

among the data owners in terms of the payoff and

the waiting time for receiving the full payoff. Once

the cost incurred by a data owner is fully compen-

sated, FLI continues to pay the data owner follow-

ing the baseline payoff-sharing scheme adopted

by the federation (which are explained in more

detailed in the “RelatedWork” section).

We make the following contributions in this

article:

1) We model and describe the problem of moti-

vating participation by high-quality data own-

ers with incentives in the context of FL.

2) We provide a real-time algorithm to jointly

achieve three fairness criteria 1) contribution

fairness, 2) regret distribution fairness, and

3) expectation fairness), which are important

to FL; and account for the interest of both the

federation and the participating data owners.

3) We show the performance bounds of the pro-

posed incentive scheme through theoretical

analysis to show that FLI can produce near-

optimal collective utility while limiting data

owners’ regret.

4) Extensive experimental comparisons with

five existing payoff-sharing schemes show

that FLI is the most attractive to high-quality

data owners and least attractive to low-qual-

ity data owners, and achieves the highest

expected revenue, thereby sustaining the

long-term well being of a data federation.

To the best of our knowledge, this article is

the first to study the issue of motivating contin-

ued participation by data owners in FL through

dynamic payoff sharing. It provides a framework

for incentive mechanism designers to sustain

participation by data owners in FL to empower

privacy respecting AI of the future.

The remaining parts of this article are orga-

nized as follows. The “Related Work” section

reviews related work in profit-sharing and pro-

vides a detailed comparison of the relative

advantages of FLI over existing approaches. The

“FLI Payoff-Sharing Scheme” section introduces

the system model of FL and explains the pro-

posed FLI scheme in detail. The “Analytical Eval-

uation” section establishes the performance

bounds of FLI through theoretical analysis. The

“Experimental Evaluation” section introduces

the experiment settings and interprets the experi-

mental results. Finally, in the “Conclusion and

Future Work” section, we conclude the article

and discuss potential future research directions.

RELATED WORK
The problem studied in this article is related

to the field of distributed welfare games. In a typi-

cal distributed welfare game, each player can

select a subset of resources to generate welfare.

The resulting welfare may depend on the subset

of players who chose this resource, and the wel-

fare generated at each resource is distributed

among players who select it at the same time.

Research in this field mainly focused on design-

ing efficient schemes to fairly form coalitions by

players in a distributed manner to reach (approx-

imate) Nash equilibria. Similar research prob-

lems have also been studied under the topic of

cost-sharing games. Most existing works in this

field investigate how to design cost-sharing

mechanisms in the context of congestion games

in order to achieve efficient resource utilization.7

The research most closely related to our

problem comes from the topic of profit-sharing

games. In general, there are three categories of

widely used profit-sharing schemes:

1) Egalitarian: any unit of utility produced by a

data federation is divided equally among the

data owners who help produce it.

2) Marginal gain: the payoff of a data owner in a

data federation is the utility that the team

gained when the data owner joined.

3) Marginal loss: the payoff of a data owner in a

data federation is the utility that the team

would lose if the data owner were to leave.

In general, a participant i’s share of payoff

from a total budget BðtÞ in a given round of

profit-sharing t, denoted as ûiðtÞ, is computed as

ûiðtÞ ¼ uiðtÞPN
i¼1 uiðtÞ

BðtÞ (1)
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where uiðtÞ is the i’s share of BðtÞ among the

peers computed following a given scheme.

Equal division is an example of egalitarian

profit-sharing.8 Under this scheme, the available

profit-sharing budget BðtÞ at a given round t is

equally divided among all N participants. Thus,

a participant i’s payoff is

uiðtÞ ¼ 1

N
: (2)

Under the individual profit-sharing scheme,8

each participant i’s own contribution to the col-

lective (assuming the collective only contains i)

is used to determine his share of the profit uiðtÞ:

uiðtÞ ¼ vðfigÞ (3)

where vðXÞ denotes the utility of a collective X.

The Labour Union game6 profit-sharing

scheme determines i’s share of BðtÞ based on

his marginal contribution to the utility of the col-

lective formed by his predecessors F (i.e., each

participant’s marginal contribution is computed

based on the same sequence as they joined the

collective)

uiðtÞ ¼ vðF [ figÞ � vðF Þ: (4)

The Shapley game profit-sharing scheme6 is

also a marginal contribution-based scheme.

Unlike the Labour Union game, Shapley game

aims to eliminate the effect of the participants

joining the collective in different sequences in

order to more fairly estimate their marginal con-

tributions to the collective. Thus, it averages the

marginal contribution for each i under all differ-

ent permutations of the i joining the collective

relative to other participants:

uiðtÞ ¼
X

P�Pjnfig

jP j!ðjPjj � jP j � 1Þ!
jPjj ½vðP [ figÞ � vðP Þ�

(5)

where a collective is divided into m parties

ðP1; P2; . . . ; PmÞ. Jia et al.9 computed a Shapley

value to split rewards among data owners. Such

computations tend to be expensive.

For gradient-based FL approaches, the gradi-

ent information can be regarded as a type of data.

However, in these cases, output agreement based

rewards are hard to apply as mutual information

requires a multitask setting, which is usually not

present in such cases. Thus, among these three

categories of schemes, model improvement is

the most relevant way of designing rewards for

FL. There are two emerging FL incentive schemes

focused onmodel improvement.

A scheme which pays for marginal improve-

ments brought about by model updates was

proposed by Richardson et al.10 The sum of

improvements might result in overestimation of

contribution. Thus, the proposed approach also

includes a model for correcting the overestima-

tion issue. This scheme ensures that payment is

proportional to model quality improvement,

which means the budget for achieving a target

model quality level is predictable. It also ensures

that data owners who submit model updates

early receive a higher reward. This motivates

them to participate even in early stages of the

federated model training process. Similar to

Richardson et al.,10;9 Jia et al. computes a Shap-

ley value to split reward among data owners.

These schemes are useful as baseline

approaches to help a federation evaluate the

contribution from a data owner. However, none

of them accounts for the fairness of distributing

profit over time with multiple contributions to a

federation.

FLI PAYOFF-SHARING SCHEME
In this section, we introduce the FL system

model and derive the FLI payoff-sharing scheme.

We explain each of the modules in the structure

of FLI as shown in Figure 2.

Figure 2. Overview of FLI.
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Modeling Contribution

We assume that the data federation follows

synchronous mode of model training commonly

adopted by FL in which data owners share their

model parameters in rounds. In round t, a data

owner i can contribute his local model trained

on a dataset to a federation. The federation is

able to assess the contribution of i’s data contri-

bution to the federation following one of the

profit-sharing schemes discussed in the previ-

ous section as the FLI baseline scheme.

To do so, a federation can run a sandbox sim-

ulation to estimate the effect of a data owner’s

contribution on model performance. The out-

come is recorded by a variable qiðtÞ50, which

denotes the expected marginal revenue the fed-

erated model can gain with i’s latest contribu-

tion. FLI is fully decoupled from how such a

contribution score is produced. Thus, we do not

focus on the exact mechanism by which qiðtÞ is
produced, and treat it as an input for FLI.

Modeling Cost

Let ciðtÞ be the cost for i to contribute the

local dataset, with size diðtÞ and quality measure

ri 2 ½0; 1�, to the federation. There can be multi-

ple ways to compute ciðtÞ. Although it is possible

to build computational models based on market

research, a more practical solution is still

auction-based self-report. A procurement auc-

tion can be used to estimate the cost when ciðtÞ
is privately known. Specifically, the federation

can ask each data owner to request a payment

for the data contribution, and then select which

data owner shall join the federation.

In this case, the delayed payment scheme can

be separated from the procurement auction,

where ciðtÞ can be interpreted as the payment to

data owner i determined by the auction. This

way, a clear separation of concern between the

auction stage and the proposed incentive

scheme can be achieved. Since this article

focuses on developing the framework of incen-

tive design for FL, we leave the topic of comput-

ing ciðtÞ to be treated in another work, and

assume that this value is available here.

Modeling Regret

For each data owner i, the federation keeps

track of the payoff gained from contributing data

to the federation over time. As this value repre-

sents the difference between what the data

owner has received so far and what he is sup-

posed to receive, we refer to this term as regret

YiðtÞ. The dynamics of YiðtÞ can be regarded as a

queueing system

Yiðtþ 1Þ , max½YiðtÞ þ ciðtÞ � uiðtÞ; 0� (6)

where uiðtÞ is the payoff to be transferred to i by

the federation. A large value of YiðtÞ indicates
that i has not been adequately compensated.

Modeling Temporal Regret

In some cases, the cost ciðtÞ may be too large

to be fully covered by a single payment of uiðtÞ
due to budget limitation in the federation. In

such cases, the federation needs to compute

instalments to be paid out to the data owners in

multiple rounds. Their share of the current pay-

out budget BðtÞ depends on their regret as well

as how long they have been waiting to receive

the full payoff. We need to take into account how

long a data contributor i has been waiting to be

fully compensated through transfers of utility by

instalment, when apportioning how big a share

of the current BðtÞ should be allocated to i.

For this purpose, we complement (6) with a

temporal queue QiðtÞ with queueing dynamics

defined as

Qiðtþ 1Þ , max½QiðtÞ þ �iðtÞ � uiðtÞ; 0� (7)

where �iðtÞ is an indicator function

�iðtÞ ¼ ĉi; if YiðtÞ > 0
0; otherwise.

�
(8)

This formulation means that as long as YiðtÞ is
not empty, the temporal queue QiðtÞ will

increase. The increment is based on i’s average

cost of data contribution to the federation ĉi

through past experience. Both queues decrease

by the same amount when the federation pays i.

Equation (7) can be reexpressed as

Qiðtþ 1Þ5QiðtÞ þ �iðtÞ � uiðtÞ: (9)

By rearranging the above inequality, we have

Qiðtþ 1Þ �QiðtÞ5�iðtÞ � uiðtÞ: (10)

Summing both sides of the above inequality over

all t 2 f0; :::; T � 1g yields

Federated Machine Learning
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XT�1
t¼0
½Qiðtþ 1Þ �QiðtÞ�5

XT�1
t¼0
½�iðtÞ � uiðtÞ�: (11)

Thus, we have

QiðT Þ �Qið0Þ5
XT�1
t¼0
½�iðtÞ � uiðtÞ�: (12)

Since Qið0Þ ¼ 0, the above inequality is simpli-

fied as

QiðT Þ
T

5
1

T

XT�1
t¼0

�iðtÞ � 1

T

XT�1
t¼0

uiðtÞ: (13)

Based on (13), by ensuring that the computed

uiðtÞ values satisfy the queueing stability require-

ment of 1
T

PT�1
t¼0 uiðtÞ5 1

T

PT�1
t¼0 �iðtÞ for the tempo-

ral queue, the profit-sharing approach can ensure

that data owners are compensated not only for

their data contributions, but also for waiting to

receive the full payoff, thereby making it “worth

their while” to attract them to the federation.

Policy Orchestrator

In order to encourage data owners to con-

tinue participating in the federation, the federa-

tion needs to ensure that the data owners are

treated fairly based on their individual contribu-

tion. Here, we define three fairness criteria that

are important to the long-term sustainable oper-

ation of a federation:

1) Contribution Fairness: a data owner i’s payoff

shall be positively related to his contribution

qiðtÞ.
2) Regret Distribution Fairness: the difference of

the regret and the temporal regret among

data owners shall be minimized.

3) Expectation Fairness: the fluctuation of data

owners’ regret and temporal regret values

shall be minimized.

In order to satisfy all the three fairness crite-

ria, the federation shall maximize a “value-minus-

regret drift” objective function over time. The col-

lective utility derived from data owners’ contribu-

tions is related to two factors: 1) the contribution

to the federation by a data owner i (qiðtÞ) and

2) the payoff that i receives from the federation

for the contribution (uiðtÞ). It is fair that a data

owner whomakes significant contributions to the

federation shall receive a high payoff

U ¼ 1

T

XT�1
t¼0

XN
i¼1
fqiðtÞuiðtÞg: (14)

Maximizing U satisfies Fairness criterion (1).

Since Yið0Þ ¼ 0 for all i, if we consistently

strive to minimize the variation in YiðtÞ over

time, the regret must not grow unbounded to

drive data owners away. A federation needs to

jointly consider the magnitude and distribution

of regret among data owners and over time in

order to treat them fairly. l2-norm can capture

simultaneously the magnitudes of the regret val-

ues and the distribution of regret among data

owners. A large l2-norm value means there are

many data owners with non-zero regrets, and/or

there are a few data owners with very large

regret. Both shall be minimized.

Based on the l2-norm technique, we formu-

late the Lyapunov function2 of FLI as

LðtÞ ¼ 1

2

XN
i¼1
½Y 2

i ðtÞ þQ2
i ðtÞ�: (15)

For the simplicity of derivation later, we omit theffiffi�p operator in the standard l2-norm calculation

and multiply the whole term with 1
2. These

changes do not alter the desirable properties of

l2-norm for our formulation.

The drift in data owners’ regret over time is

~ ¼ 1

T

XT�1
t¼0
½Lðtþ 1Þ � LðtÞ�

¼ 1

T

XT�1
t¼0

XN
i¼1

"
1

2
Y 2

i ðtþ 1Þ � 1

2
Y 2

i ðtÞ

þ 1

2
Q2

i ðtþ 1Þ � 1

2
Q2

i ðtÞ
#

4
1

T

XT�1
t¼0

XN
i¼1

"
1

2
ðYiðtÞ þ ciðtÞ � uiðtÞÞ2

� 1

2
Y 2

i ðtÞ þ
1

2
ðQiðtÞ þ �iðtÞ � uiðtÞÞ2 � 1

2
Q2

i ðtÞ
#

4
1

T

XT�1
t¼0

XN
i¼1

"
YiðtÞciðtÞ � YiðtÞuiðtÞ þ 1

2
c2i ðtÞ

� ciðtÞuiðtÞ þ 1

2
u2

i ðtÞ þQiðtÞ�iðtÞ �QiðtÞuiðtÞ

þ 1

2
�2

i ðtÞ � �iðtÞuiðtÞ þ 1

2
u2

i ðtÞ
#
:

(16)
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Since uiðtÞ is the control variable here, we

extract only terms containing it from (16)

~4
1

T

XT�1
t¼0

XN
i¼1

u2
i ðtÞ � uiðtÞ½YiðtÞ þ ciðtÞ þQiðtÞ þ �iðtÞ�

� �
:

(17)

The regret drift variable ~ jointly captures the

distribution of regret (both YiðtÞ and QiðtÞ)
among data owners, as well as the fluctuation of

regret over time. Minimizing ~ satisfies Fairness

criteria (2) and (3).

By jointly considering collective utility and

the distribution of regret, the overall objective

function for a given federation can be defined as

“maximize the collective utility, to address fair-

ness criteria (1), while minimizing the magnitude

and distribution of regret over time, to address

fairness criteria (2) and (3):”

vU �~ (18)

which shall be maximized. Here, v is a regulariza-

tion term for a federation to control the tradeoff

between the two objectives. Thus, the objective

function of a federation is

Maximize:

1

T

XT�1
t¼0

XN
i¼1
fuiðtÞ½vqiðtÞ þ YiðtÞ þ ciðtÞ þQiðtÞ

þ �iðtÞ� � u2
i ðtÞg

(19)

Subject to:

XN
i¼1

ûiðtÞ4BðtÞ 8t (20)

ûiðtÞ50 8i; t (21)

where ûiðtÞ4uiðtÞ denotes the actual instalment

payout from the federation to a data owner i in

round t, which will be derived in the following

section.

Computing Payoff Weightage

In order to optimize (19), we set its first deriv-

ative to 0 and solve for uiðtÞ
d

duiðtÞ ½vU �~� ¼ 0: (22)

Solving the above equation yields

uiðtÞ ¼ 1

2
½vqiðtÞ þ YiðtÞ þ ciðtÞ þQiðtÞ þ �iðtÞ�: (23)

The second derivative of (19) is

d2

du2
i ðtÞ
½vU �~� ¼ �1 < 0: (24)

Thus, the solution maximizes the objective

function.

Algorithm 1. Federated Learning Incentivizer

(FLI)

Input: v and BðtÞ set by the system administrator;

YiðtÞ from all data owners at round t (with YiðtÞ ¼ 0
for any i who just joined the federation); and QiðtÞ
from all data owners at round t (with QiðtÞ ¼ 0 for

any i who just joined the federation).

1: Initialize SðtÞ  0; //to hold the sum of all uiðtÞ
values.

2: for i ¼ 1 to N do

3: if diðtÞ > 0 then
4: Compute ciðtÞ;
5: Compute qiðtÞ;
6: else

7: ciðtÞ ¼ 0;
8: end if

9: uiðtÞ  1
2 ½vqiðtÞ þ YiðtÞ þ ciðtÞ þQiðtÞ þ �iðtÞ�;

10: SðtÞ  SðtÞ þ uiðtÞ;
11: end for

12: for i ¼ 1 to N do

13: ûiðtÞ  uiðtÞ
SðtÞ BðtÞ

14: Yiðtþ 1Þ  max½0; YiðtÞ þ ciðtÞ � ûiðtÞ];
15: Qiðtþ 1Þ  max½0; QiðtÞ þ �iðtÞ � ûiðtÞ];
16: end for

17: return û1ðtÞ; û2ðtÞ; :::; ûNðtÞf g;

For contributing diðtÞ amount of data of qual-

ity qiðtÞ at round t, the data owner i shall receive

a total compensation of uiðtÞ ¼ 1
2 ½vqiðtÞ þ YiðtÞ þ

ciðtÞ þQiðtÞ þ �iðtÞ�. The federation may need to

pay out this in instalments over a period of time

if not enough budget BðtÞ is available to pay all

data owners fully at round t. To share BðtÞ
among the data owners, the computed uiðtÞ val-
ues are used as weights to divide the budgetBðtÞ.
The actual payout instalment to i at t ûiðtÞ is

ûiðtÞ ¼ uiðtÞPN
i¼1 uiðtÞ

BðtÞ: (25)

The FLI payoff-sharing scheme is summarized

in Algorithm 1. It accounts for both the magni-

tude and the temporal aspects of participating in

a federation. Data owners who has contributed a

large set of high quality data, and who has not

been fully compensated for a long time will enjoy

Federated Machine Learning
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a higher share of subsequent revenues gener-

ated by the federation. The federation uses such

a mechanism to ensure that the data owners’

interests are well taken care of and in a timely

manner.

The computational time complexity of Algo-

rithm 1 is OðNÞ. Once YiðtÞ and QiðtÞ both reach

0 with no new cost incurred by i, uiðtÞ ¼ vqiðtÞ.
From then on, i will share future payoffs based

on his contribution to the federation assessed

using one of the baseline methods (e.g., the

Shapley game payoff-sharing scheme). FLI priori-

tizes compensating the data owners with non-

zero regret while taking into account their

contributions.

ANALYTICAL EVALUATION
In this section, we analyze the performance

bounds of FLI.

Collective Utility

Let U�ðtÞ be the theoretical optimal collective

utility achieved by a federation at round t follow-

ing an Oracle payoff-sharing scheme. It is possi-

ble find positive values v, �, and d such that

vUðtÞ � DðtÞ5vU�ðtÞ þ �
XN
i¼1

uiðtÞ � d: (26)

Summing both sides of the above inequality over

t 2 f0; 1; . . . ; T � 1g, we have

v
XT�1
t¼0

UðtÞ �
XT�1
t¼0
½Lðtþ 1Þ � LðtÞ�

¼ v
XT�1
t¼0

UðtÞ � LðT Þ þ Lð0Þ5v
XT�1
t¼0

U�ðtÞ

þ �
XT�1
t¼0

XN
i¼1

uiðtÞ � Td: (27)

Since Lð0Þ ¼ 0, LðT Þ50 and �
PT�1

t¼0
PN

i¼1 ui

ðtÞ50, the above inequality can be reexpressed as

v
XT�1
t¼0

UðtÞ5v
XT�1
t¼0

U�ðtÞ þ �
XT�1
t¼0

XN
i¼1

uiðtÞ

þ LðT Þ � Td5v
XT�1
t¼0

U�ðtÞ � Td: (28)

Taking the time-average of this inequality yields

the lower bound on the long-term time-averaged

collective utility

lim inf
T!1

1

T

XT�1
t¼0

UðtÞ5 1

T

XT�1
t¼0

U�ðtÞ � d

v
: (29)

The result shows that, by following FLI, a fed-

eration produces long-term time-averaged collec-

tive utility within Oð1
v
Þ of the theoretical optimal

time-averaged collective utility. By increasing

the value of v, a federation can achieve the time-

averaged collective utility closer to the optimal

time-averaged collective utility. Note that this

collective utility is different from the social wel-

fare. It expresses the desire to reward data own-

ers fairly based on their contributions.

Total Payout by the Federation

Similarly, rearranging the terms in (26) yields

�
XT�1
t¼0

XN
i¼1

uiðtÞ

4v
XT�1
t¼0

UðtÞ þ Td� v
XT�1
t¼0

U�ðtÞ � LðT Þ þ Lð0Þ

4v
XT�1
t¼0

UðtÞ þ Td:

(30)

Taking the time-average of this inequality yields

the upper bound on the long-term time-averaged

total payout

lim sup
T!1

1

T

XT�1
t¼0

XN
i¼1

uiðtÞ4 v

T�

XT�1
t¼0

UðtÞ þ d

�
:

(31)

The result shows that, by following FLI, the

long-term time-averaged total payout by the fed-

eration to data owners is bounded by OðvÞ.
Increasing the value of v will signal the federa-

tion to pay out more of its revenue.

Regret

Recall that a data owner’s regret when con-

tributing data to a federation is defined by (6).

Rearranging the terms and removing themax½�; 0�
operator in (6) yields

Yiðtþ 1Þ � YiðtÞ5ciðtÞ � uiðtÞ: (32)

The long-term time-averaged change in i’s

regret is
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lim
T!1

1

T

XT�1
t¼0
½Yiðtþ 1Þ � YiðtÞ�

5 lim
T!1

1

T

XT�1
t¼0
½ciðtÞ � uiðtÞ�:

(33)

Based on (23), we have

lim
T!1

1

T

XT�1
t¼0

uiðtÞ ¼ lim
T!1

1

T

XT�1
t¼0
½vqiðtÞ þ YiðtÞ þ ciðtÞ�

5 lim
T!1

1

T

XT�1
t¼0

ciðtÞ:

(34)

Therefore, the lower bound of a data owner i’s

long-term time-averaged regret is

lim inf
T!1

1

T
YiðT Þ5 1

T

XT�1
t¼0
½ciðtÞ � uiðtÞ� (35)

where 1
T

PT�1
t¼0 ½ciðtÞ � uiðtÞ�40. Since

�
XT�1
t¼0

XN
i¼1

uiðtÞ ¼ �
XT�1
t¼0

XN
i¼1
½vqiðtÞ þ YiðtÞ þ ciðtÞ�

4v
XT�1
t¼0

UðtÞ þ Td� v
XT�1
t¼0

U�ðtÞ

� LðT Þ þ Lð0Þ:
(36)

We have

�
XT�1
t¼0

XN
i¼1

YiðtÞ4v
XT�1
t¼0

UðtÞ þ Td� v
XT�1
t¼0

U�ðtÞ

� LðT Þ þ Lð0Þ � �
XT�1
t¼0

XN
i¼1
½vqiðtÞ þ ciðtÞ�

¼ Tdþ v
XT�1
t¼0

UðtÞ � v
XT�1
t¼0

U�ðtÞ
" #

� LðT Þ � �
XT�1
t¼0

XN
i¼1
½vqiðtÞ þ ciðtÞ�:

(37)

As v
PT�1

t¼0 UðtÞ � v
PT�1

t¼0 U�ðtÞ
h i

40, the above

inequality can be rewritten as

�
XT�1
t¼0

XN
i¼1

YiðtÞ ¼ �
XN
i¼1

YiðT Þ4Td: (38)

Thus, the upper bound of the time-averaged

regret is

lim sup
T!1

1

T

XT�1
t¼0

XN
i¼1

YiðtÞ4 d

�
: (39)

The result shows that, as long as the federa-

tion ensures that the condition of 1
T

PT�1
t¼0 ½uiðtÞ�

ciðtÞ�50 holds, the long-term time-averaged

regret for data owners is upper-bounded by a

constant value and will not grow indefinitely

04 lim
T!1

1

T

XT�1
t¼0

XN
i¼1

YiðtÞ4 d

�
: (40)

Thus, we show that FLI is stable in terms of data

owners’ regret regardless of the choice of value

for v since uiðtÞ5ciðtÞ; 8i; t according to (23).

EXPERIMENTAL EVALUATION
To complement the analytical results and eval-

uate the performance of FLI under FL settings, we

build a multiagent simulator which creates data

owner agents with diverse characteristics and

supports multiple payoff-sharing schemes. The

relative performance of the schemes in the simula-

tion ismore important than the exact values.

Experiment Settings

In the experiments, there are seven federa-

tions each adopting one of the following six pay-

off-sharing schemes for data owner agents to join:

1) Linear: a data owner i’s share of BðtÞ is pro-

portional to the total quantity of data contri-

bution weighted by its data quality (this is a

baseline payoff-sharing scheme that we

designed for experimental comparison pur-

poses only).

2) Equal: BðtÞ is equally divided among data

owners in this federation.8

3) Individual: i’s share of BðtÞ is proportional to

his marginal contribution to the revenue of

the federation.8

4) Union: i’s share of BðtÞ follows the Labour

Union game6 scheme and is proportional to

his marginal contribution to the revenue of

the federation formed by his predecessors,

vðF [ figÞ � vðF Þ.
5) Shapley: i’s share of BðtÞ follows the Shapley

value-based scheme proposed in.9

6) FLI: data owners receive payoff according to

FLI (with v ¼ 1).
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We follow the decreasing marginal utility

assumption to map data quality and quantity to

revenue generated by a federation. The revenue

function used in the experiment is log -linearly

related to the product between the quality and

quantity of data contributed to it. It is of the

form log ð1þPi

P
t diðtÞriÞ. In essence, federa-

tions are competing for data owner agents. The

performance of the schemes is evaluated by the

percentage and type of data owner agents who

eventually choose to join each of them and the

revenue generated. Each round of simulation

consists of 1 000 epochs, and we repeat the simu-

lation for 10 rounds with reinitialization to

smoothen the effect of randomness.

We simulate 100 self-interested data owner

agents in the experiment, each representing a

company. Their ri values are randomly initial-

ized following a uniform distribution between 0

and 1 at the beginning of each round of experi-

ment. In each epoch, each agent decides on

which federation to join based on the cumulative

payoffs received from each federation so far. The

probability of an agent joining a federation at t

equals to the cumulative payoff it received from

this federation divided by total payoff received

from all federations. Each agent joins federations

following the �-greedy approach, with equal

starting probability for all federations.

Results and Discussion

Figure 3 shows different data owner agents’

final probability of following each scheme. Data

owner agents are divided into five types based

on their individual ri values. Agents with ri val-

ues belonging to the range of [0,0.2), [0.2,0.4),

[0.4,0.6), [0.6,0.8), and [0.8,1] are labeled as

“Very Low,” “Low,” “Medium,” “High,” and “Very

High” types, respectively. It can be observed

that the medium, low, and very low type agents

have the smallest probabilities of joining the fed-

eration adopting FLI. Shapley and Union follow

are similar trend, but are less attractive to very

high and high type agents compared to FLI. Indi-

vidual, linear, and equal are more attractive to

agents with lower data quality than those with

higher data quality.

Figure 4 shows the total quantity of data

received by each federation weighted by data

quality ( 1
NT

P
i

P
t diðtÞri). FLI achieves the best

performance, outperforming the second best

scheme, Shapley, by around 7%. Individual and

Figure 3. Data owner agents’ final probability of

following each scheme.

Figure 4. 1
NT

P
i

P
t diðtÞri as a percentage of that

achieved by FLI.

Figure 5. Revenue as a percentage of that

achieved by FLI.
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Union perform similarly, which is around 10%

lower than that achieved by FLI. The perfor-

mance of equal is more than 30% lower than that

of FLI. Linear fares the worst, underperforming

FLI by over 34%.

Figure 5 shows the total revenue as a result of

the data received by each federation. Similar to

the trend shown in Figure 4, FLI achieves the high-

est revenue, followed by Shapley, individual,

union, equal, and linear. As long as the adopted

revenue function monotonically increases with

data quality and quantity, this performance trend

holds.

CONCLUSION AND FUTURE WORK
In this article, we proposed the FLI payoff-

sharing scheme incentivize FL data owners to

contribute high-quality data to the data federa-

tion. Data owners who has contributed a large

set of high-quality data, and who has not been

fully compensated for a long time, will enjoy a

higher share of subsequent revenues generated

by the federation. A federation following FLI is

able to dynamically adjust data owners’ shares

in order to fairly distribute benefits and sacrifice

among them. Analytical evaluation established

that FLI is able to produce near-optimal collec-

tive utility while limiting data owners’ regret.

With FLI accounting for the temporary mismatch

between contributions and rewards due to the

limitations of FL, thereby enabling a healthy FL

ecosystem to emerge over time. To the best of

our knowledge, FLI is the first incentive mecha-

nism designed for FL. It jointly considers factors

important to FL, with clear separation of con-

cerns with respect to the delay for the federated

model to start generating revenue.

In subsequent research, we will extend the

fairness criteria being considered to include the

likes of proportional fairness for instance. We

will also study alternative ways to quantify the

impact ri of an encrypted dataset contributed

by a data owner on the well being of a data feder-

ation. One of the most challenging task is to esti-

mate data owners’ cost incurred for joining the

federation. A federation can run a sandbox simu-

lation to estimate the effect of a data owner’s

contribution on model performance. A well-

designed sandbox should be able to simulate the

change in revenue as a result of a data owner’s

contribution. In this way, the mechanism is fully

decoupled from how such a contribution score

is produced.
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