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Abstract

We study signaling games with quadratic payoffs. As signaling games admit multiple separating equilib-
ria, many equilibrium selection rules are proposed and a well-known solution is Riley equilibria. They are 
separating equilibria in which the sender achieves the highest equilibrium payoff for all types among all 
separating equilibria. We analyze the conditions for Riley equilibria to be linear, a common assumption in 
many applications. We derive a sufficient and necessary condition for the existence and uniqueness of linear 
Riley equilibria. We apply the result to confirm the dominance of linear equilibria in some classic examples, 
and we show that, in some other examples, there exist previously unknown nonlinear Riley equilibria.
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1. Introduction

Signaling games play an important role in many areas of social sciences, providing insights 
into issues such as education (Spence, 1973), limit pricing (Milgrom and Roberts, 1982), lead-
ership (Hermalin, 1998), and insurance (Rothschild and Stiglitz, 1976). In signaling games, a 
privately informed sender strategically takes an action to influence an uninformed receiver. A 
particularly important case is when the sender’s equilibrium strategy is separating and completely 
reveals the state.

As signaling games admit multiple separating equilibria, many equilibrium selection rules are 
proposed and a well-known solution is Riley equilibria (Riley, 1975, 1979). They are separating 
equilibria in which the sender achieves the highest equilibrium payoff for all types among all sep-
arating equilibria. Riley equilibria require the least amount of inefficient signaling and therefore 
Pareto-dominate all separating equilibria. On the other hand, linear equilibria are widely studied 
due to their simplicity.1 This paper answers an important query: does a linear Riley equilibrium 
exist, and if so, under what conditions?

As linear solutions most commonly appear in quadratic settings, we focus on signaling games 
with quadratic payoffs. A sender (he) is privately informed about an underlying state θ ∈ �

and takes an action a1 ∈ R. After observing a1, a receiver (she) chooses an action a2 ∈ R. The 
sender’s ideal points for these two actions are linear in the state. The receiver wants her action 
to match the state. This setup is widely considered in the literature and nests a broad class of 
models in industrial organization and organizational economics as shown in Section 5.

The analysis of quadratic signaling games is technically challenging, as the widely adopted 
assumption of belief monotonicity and the single-crossing condition (for example, Spence, 1973; 
Mailath, 1987; Roddie, 2011; Mailath and von Thadden, 2013) do not necessarily hold.2 Without 
these assumptions, our analysis requires novel arguments for analyzing Riley equilibria.

Our main result provides a necessary and sufficient condition for the existence and uniqueness 
of linear Riley equilibria (Theorem 1). Our results imply that the common restriction to linear 
strategies is only partially justified and that in general a wider class of strategies is possible. 
To guarantee that Riley equilibrium is linear, one needs to impose restrictions not only on the 
preference parameters but also on the state space. On the other hand, we establish equilibrium 
properties such as continuity, differentiability, and monotonicity (Theorem 2).

We apply our results to the following four examples in the literature. The classic model of 
leadership in Hermalin (1998) studies how a leader incentivizes employees to exert effort on 
a project. The leader privately observes the valuation of the project and publicly exerts effort. 
Based on the leader’s effort, the other workers make inferences about the project’s valuation and 
exert effort simultaneously. We show that whether Riley equilibrium is linear crucially depends 
on the state space. Hermalin (1998) focuses only on linear equilibria. Yet, if we slightly perturb 
the space of the valuation, Riley equilibrium is no longer linear.

Argenziano and Bonatti (2021) consider a dynamic model of behavior-based price discrimi-
nation. A consumer sequentially interacts with two firms. In the first period, firm 1 sets a price 
and a quality level and the consumer chooses the quantity to consume. A data linkage allows the 
second firm to observe the first-period outcome. After observing the outcome, the second firm 
tailors its quality level and price to the consumer’s type. Argenziano and Bonatti (2021) focus on 

1 For example, Bonatti and Cisternas (2019); Argenziano and Bonatti (2021); Ball (2021) study linear equilibria in 
signaling games with quadratic payoffs.

2 See Section 6 for a more detailed discussion.
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linear Bayesian Nash equilibria. We show that there exist previously unknown nonlinear Riley 
equilibria under alternative parameters.

Kartik et al. (2007) analyze a model of strategic communication between an informed but 
upwardly biased sender and an uninformed receiver. The sender bears a cost of lying about his 
private information. Kartik et al. (2007) show that the sender’s message is biased above the 
state. Dispensing with the belief monotonicity assumption allows us to consider a case in which 
the sender’s preference is biased upward for some states but downward for other states. We 
generalize Kartik et al.’s (2007) result by showing that the language is inflated if and only if the 
sender is upwardly biased (Proposition 3).

Following Aghion et al. (2004), we study a delegation problem where a principal faces an 
informed but biased agent. The principal delegates control to the agent to use his local knowl-
edge. After learning from the agent’s decision, the principal reclaims control and make decisions 
by herself. In this example, we show that Riley equilibrium is also optimal for the principal 
(Proposition 4).

Literature Review
We contribute to the literature on Riley equilibrium by studying its linearity. Riley equilibrium 

is important in its own right and the literature has shown that it admits many equilibrium refine-
ments. Cho and Kreps (1987) show that in Spence’s model of job-market signaling with two 
types, the only equilibrium not rejected by the intuitive criterion is Riley equilibrium. Even with 
more than two types, Cho and Sobel (1990) show that a stronger criterion, called the D1 refine-
ment, selects Riley equilibrium. Ramey (1996) shows that with multiple signals and a continuum 
of states, the D1 refinement selects Riley equilibrium under the Spence–Mirrlees single-crossing 
condition.34

Our paper contributes to the literature on signaling games by dispensing with several com-
mon assumptions, including belief monotonicity and the single-crossing condition (for example, 
Spence, 1973; Mailath, 1987; Roddie, 2011; Mailath and von Thadden, 2013).5 Mailath (1987)
studies signaling games with a continuum of types and introduces belief monotonicity to dis-
cuss the differentiability of separating strategies. In that paper, belief monotonicity is needed 
to provide two additional conditions. The first is an initial value condition. The second is the 
Spence–Mirrlees single-crossing condition. Each of these conditions (combined with regularity 
conditions) implies differentiability of separating strategies.

Mailath (1987) pins down Riley equilibrium with the initial value condition. That is, the worst 
type takes his most preferred action (with no inefficient signaling). He mentions that “the worst 
type is the worst belief off the equilibrium path. A deviation by the worst type to his most pre-
ferred action cannot be credibly punished.” This logic is exactly the same as checking whether 

3 Similarly, Nöldeke and Samuelson (1997) consider a dynamic Spencian model with perturbations and show that the 
only separating equilibrium selected by this model is Riley equilibrium.

4 Both the intuitive criterion and divinity criterion rely on forward-induction arguments. A growing body of work has 
given precise foundations for solution concepts based on forward-induction, such as extensive-form rationalizability, in 
terms of assumptions of strong belief in rationality (see Battigalli and Siniscalchi, 2002; Battigalli, 2006; Battigalli and 
Prestipino, 2013; Battigalli and Catonini, 2021).

5 In the literature, there are some other assumptions that improves the tractability of signaling games. For example, 
Kartik et al. (2007) propose a direction condition: given a correct belief, taking a higher action and inducing a higher 
belief affect the sender’s payoff in the same direction. In the same vein, Mailath and von Thadden (2013) assume action 
monotonicity: under a correct belief, the sender always prefers a higher action. Notice that none of these assumptions 
necessarily hold in our model.
3
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an equilibrium payoff profile fails the intuitive criterion and D1. We generalize the initial value 
condition in Section 6.4.

2. The model

We study games with quadratic payoffs. Let θ ∈ � denote the state of the world. The state 
space � = [m, M] is a bounded closed interval in R. A sender (he) is privately informed about 
the underlying state θ and takes an action a1 ∈R. After observing a1, a receiver (she) chooses an 
action a2 ∈ R. The receiver’s payoff is given by uR(θ, a2, a1). The sender’s payoff is given by

US(θ, a2, a1) = −(a1 − aS
1 (θ))2 − δ(a2 − aS

2 (θ))2,

where aS
1 : � → R and aS

2 : � → R denote the sender’s most preferred actions for a1 and a2, 
respectively. The parameter δ ≥ 0 captures the sensitivity of the sender’s payoff to the receiver’s 
action.6 The quadratic form is tractable and allows for closed-form solutions.

We assume that the receiver’s payoff uR(θ, ·, a1) is uniquely maximized at a2 = aR(θ), which 
is independent of the sender’s action. In addition, we assume that aR(θ) is continuous and strictly 
increasing in θ . We normalize7 aR(θ) = θ . Moreover, we assume that the sender’s ideal points 
aS

1 and aS
2 are linear in the state: aS

1 (θ) = k1θ +b1 and aS
2 (θ) = k2θ +b2 with k1 �= 0. We discuss 

applications of quadratic signaling games in Section 5.
Our interest is in separating equilibria, i.e., equilibria in which the sender plays different 

actions in different states. A pure separating strategy for the sender is a one-to-one mapping 
σ : � → R. Let μ : R → P (�) denote the receiver’s belief over the states after observing the 
sender’s action, where P (�) denotes the set of probability distributions on �. Given a strategy σ , 
let A1(σ ) � {σ(θ)|θ ∈ �} be the range of strategy σ . Bayes’ rule requires that if σ is separating, 
for any a ∈ A1(σ ), μ(a) is a point-mass distribution (Dirac function) on σ−1(a). For any a ∈
R \ A1(σ ), all beliefs are permissible, but we can show that it is without loss of generality to 
restrict attention to point-mass beliefs (μ : R → �). Let V (θ, θ̂ , a1) denote the sender’s reduced-
form payoff from taking action a1 when the true state is θ and the receiver infers θ̂ and best 
responds to this belief, i.e.,

V (θ, θ̂ , a1) = −(a1 − aS
1 (θ))2 − δ(θ̂ − aS

2 (θ))2. (1)

A separating PBE is a one-to-one strategy, σ : � → R, and a receiver’s belief, μ : R → �, 
such that the following conditions hold:

1. Belief consistency: ∀θ ∈ �, μ(σ(θ)) = θ ,
2. Incentive compatibility: ∀θ, θ ′ ∈ �,

V (θ, θ, σ (θ)) ≥ V (θ, θ ′, σ (θ ′)),

3. Off-path belief: ∀θ ∈ �, ∀a /∈ A1(σ ), V (θ, θ, σ(θ)) ≥ V (θ, μ(a), a).

As there may be many separating equilibria, we rank them in terms of the sender’s payoff. A 
separating equilibrium is the Riley equilibrium if it gives the sender the highest payoff among all 

6 Our results apply to the case where δ < 0 as well. But we need to additionally check a second-order condition (3). 
We provide an example in Section 5.2.

7 Indeed, we can relabel the state to be equal to θ̃ � aR(θ).
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separating PBE at every state. Formally, given an equilibrium where the sender plays strategy σ , 
this equilibrium is Riley equilibrium if, for all θ ∈ �,

V (θ, θ, σ (θ)) ≥ V (θ, θ, σ ′(θ))

holds for all σ ′ played in any separating equilibrium.
In equilibrium, the receiver takes her most preferred action aR(θ) = θ , which might differ 

from the sender’s ideal point aS
2 (θ) = k2θ + b2. The distance between them is aS

2 (θ) − aR(θ) =
k2θ + b2 − θ . First, we define the preference-aligned state θ0 in which this distance is zero:

θ0 = k2θ0 + b2.

That is, θ0 � b2
1−k2

, where θ0 may or may not be in �, depending on the values of the parameters.8

Second, this distance as a function of the state θ increases at rate (k2 −1). The larger the distance, 
the smaller the sender’s payoff. Recall that δ captures the sensitivity of the sender’s payoff to the 
receiver’s action. To measure the marginal benefit of inducing a higher belief, we define the 
marginal impact r � δ(k2 − 1).

We now provide an overview of our main result.

Theorem 1. There exists a linear Riley equilibrium if and only if r > 0 and θ0 ∈ �. Moreover, 
whenever it exists, it is unique.

We provide the analytical solution of the linear Riley equilibrium in Appendix A. Proving this 
result requires several steps of analysis. Specifically, it follows directly from our Proposition 2
and Theorem 2.

3. Preliminary analysis

In this section, we characterize incentive-compatible separating strategies. We first introduce 
a useful definition. Let S : � → R, S(θ) � σ(θ) − aS

1 (θ) denote the strategic distortion—that 
is, the distance between the sender’s action and his ideal point. If the sender is completely my-
opic, he ignores the inferential impact of his action and chooses S(θ) = 0 for all θ . By contrast, 
the strategic sender distorts his action away from the myopic benchmark. Consequently, S(θ)

captures the strategic distortion. From now on, we focus on S, as solving for S is equivalent to 
solving for the sender’s strategy.

In the following analysis, we first identify some necessary conditions of incentive compatibi-
lity—that is, what properties a separating strategy must have to be incentive compatible. Then 
we combine these necessary conditions to make them jointly sufficient.

First, notice that the sender’s equilibrium payoff must be continuous. Otherwise, at the dis-
continuity, incentive compatibility fails. Since the sender’s equilibrium payoff is −S2(θ) − δ(θ −
aS

2 (θ))2, the function |S| must be continuous everywhere.
Second, at any state where the sender’s strategy is continuous, how S varies with the state 

is restricted by incentive compatibility. We define the sender’s payoff in state θ when he takes 
action σ(θ ′) and induces belief θ ′ as

U (θ ′; θ)� V (θ, θ ′, σ (θ ′)),

8 If k2 = 1, we can define θ0 = ∞.
5
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where we suppress the dependence on σ . Incentive compatibility is equivalent to

θ ∈ arg max
θ̂

U (θ̂; θ).

If the sender’s strategy is differentiable, two necessary conditions for the maximization problem 
described above must be satisfied. The first one is its first-order condition:

∂U (θ̂; θ)

∂θ̂

∣∣∣∣
θ̂=θ

= 0, ∀θ ∈ (m,M),

which we can write explicitly as a differential equation of S:

S(θ)[dS(θ)

dθ
+ k1] = rθ + δb2. (2)

The second necessary condition is its second-order condition:

∂2U (θ̂; θ)

∂θ̂2

∣∣∣∣
θ̂=θ

≤ 0, ∀θ ∈ (m,M). (3)

Third, when an incentive-compatible separating strategy is discontinuous, the direction of the 
jump is controlled by incentive compatibility. We can show that the direction has the same sign 
as k1.9 In the following proposition, we summarize the above discussions by three necessary 
conditions. It turns out that they are jointly sufficient. We thus obtain a tractable characterization 
of incentive compatibility.

Proposition 1 (Characterization). A separating strategy S is incentive compatible if and only if 
all of the following conditions hold:

1. |S| is continuous.
2. At every point in (m, M) where S is continuous, S is differentiable and satisfies the first-order 

condition (2) and the second-order condition (3).
3. If S is discontinuous, then, at each discontinuity, both left and right limits exist and the jump 

has the same sign as k1.

Incentive compatibility is a global concept that requires U (θ; θ) ≥ U (θ̂; θ) for all θ, θ̂ ∈ �. 
Yet using this requirement to check incentive compatibility is tedious. The proposition improves 
the tractability of identifying Riley equilibria. We use this result to solve for Riley equilibria in 
the next section.

4. Main results

In this section, we characterize Riley equilibria that maximize the sender’s payoff in all states. 
One question of particular interest is whether and when Riley equilibria are linear. Before an-
swering this question, we first need to know when a linear incentive-compatible strategy exists. 
Hence, we first explore its existence.

9 An incentive-compatible separating strategy need not be either monotonic or continuous. We provide an example in 
the proof of Proposition 4.
6
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4.1. Existence of linear incentive-compatible strategies

It turns out a linear incentive-compatible strategy does not always exist. We show that its 
existence is determined by what we call the discriminant of the game: � � k2

1 + 4r , where 
r = δ(k2 − 1).

Proposition 2 (Discriminant). There exists a linear incentive-compatible separating strategy if 
and only if � ≥ 0. Moreover, it takes the form S(θ) = t (θ − θ0), where t is the slope.

Proof of Proposition 2. Necessity: Fix some linear strategy S(θ) = t (θ −θ0) + l, parameterized 
by t and l. Then the marginal value of inducing a higher belief is

∂U (θ̂; θ)

∂θ̂

∣∣∣∣
θ̂=θ

= −2[(t2 + k1t − r)(θ − θ0) + l(t + k1)].

For S to be incentive compatible, ∂U (θ̂;θ)

∂θ̂

∣∣∣∣
θ̂=θ

must vanish for every θ . In particular, the coeffi-

cient of θ must vanish, i.e., t2 + k1t − r = 0. The discriminant of this equation for t is exactly �, 
which is the discriminant of the game. When � is negative, there are no solutions, and it follows 

that ∂U (θ̂;θ)

∂θ̂

∣∣∣∣
θ̂=θ

does not vanish for all θ . Thus, no linear strategy can be incentive compatible.

Sufficiency: When � ≥ 0, differential equation (2) has linear solutions (see Appendix A). 
Moreover, they satisfy the second-order condition. As linear solutions are continuous, by the 
Characterization Proposition 1, the linear solutions are incentive compatible.

Now suppose that there is a linear incentive-compatible strategy. By the Characterization 
Proposition 1, it satisfies differential equation (2). Its linear solutions take the form S(θ) =
t (θ − θ0) (see Appendix A). �

The above proposition implies that the existence of a linear incentive-compatible separat-
ing strategy crucially depends on the sign of the discriminant �. To illustrate the intuition, 
we analyze the sender’s incentive to manipulate the receiver’s belief, which we call the belief-
manipulation incentive. Given a correct belief θ , the receiver’s action leads to the sender’s payoff 
−δ(θ − aS

2 (θ))2. When k2 > 1, aS
2 (θ) − θ is positive for θ > θ0 (negative for θ < θ0), where θ0

is the preference-aligned state. This gives the sender an incentive to induce a belief slightly far-
ther away from θ0 because |aS

2 (θ) − θ̂ | is smaller when inducing a belief slightly farther away 
from θ0. Similarly, when k2 < 1, the sender has an incentive to induce a belief slightly closer 
to θ0. A incentive-compatible separating strategy has to balance the marginal benefit of belief 
manipulation with the marginal cost of strategic distortion.

First, we explain why there cannot exist a linear incentive-compatible separating strategy 
when r = δ(k2 − 1) is so negative that � < 0. This corresponds to the situation in which k2 <

1 and the two players’ preferences are sufficiently misaligned. In the left panel of Fig. 1, we 
plot both players’ ideal points in such a situation. Suppose that k1 > 0. To counterbalance the 
incentive to induce a belief closer to θ0, we have to set t ∈ (−k1, 0). That is, the sender’s strategy 
σ rotates clockwise moderately (around θ0) relative to aS

1 (θ) (see the right panel of Fig. 1). As 
the preference gap becomes sufficiently large because of a lower k2, the belief-manipulation 
incentive becomes so strong that it outweighs the cost of strategic distortion, no matter what 
linear strategy the sender uses.
7
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Bliss point

θ

aS
2 (θ)

aR(θ)

0 θ0

a1

θ
0 θ0

aS
1 (θ) = k1θ + b1

σ(θ) = t (θ − θ0) + aS
1 (θ)

Fig. 1. Bliss point (left) and Sender’s strategy (right).

Formally, consider a state θ < θ0. In a candidate linear separating equilibrium, the marginal 
benefit of inducing a belief closer to θ0 is

∂

∂θ̂
[−δ(θ̂ − k2θ − b2)

2]
∣∣∣∣
θ̂=θ

= −2r(θ0 − θ),

whose magnitude is scaled by the marginal impact r . For any linear strategy with slope t ∈
(−k1, 0), the marginal cost of inducing a belief closer to θ0 is

∂

∂θ̂
[(σ (θ̂) − aS

1 (θ))2]
∣∣∣∣
θ̂=θ

= −2(t2 + k1t)(θ0 − θ),

which is maximized at t = −k1/2. When r is so negative that � = k2
1 + 4r < 0, the marginal 

benefit always outweighs the marginal cost for any t ∈ (−k1, 0). Thus, no linear strategy can be 
incentive compatible.

Second, when r > 0, we can similarly consider a state θ > θ0. The marginal benefit of induc-
ing a belief farther away from θ0 is 2r(θ − θ0) while the marginal cost is 2(t2 + k1t)(θ − θ0). We 
have to set t /∈ [−k1, 0] such that the marginal cost can counterbalance the marginal benefit. As 
the range of t is unbounded in this case, we can always find a suitable t such that the marginal 
cost cancels out the marginal benefit. Therefore, an incentive-compatible linear strategy always 
exists.

Finally, the above analysis also highlights how k1 determines the existence of a linear 
incentive-compatible separating strategy. Consider the case with r < 0 and k1 > 0 (in Fig. 1). 
To counterbalance the incentive to induce a belief closer to θ0, we require t ∈ (−k1, 0).10 Then, 
the strategic distortion |S| increases with k1. This implies that the marginal cost of inducing a 
belief closer to θ0 increases with k1. When k1 is sufficiently large, this marginal cost can be 
strong enough to counterbalance the belief-manipulation incentive for some suitable t . Thus, 
some linear strategies can be incentive compatible.

The Discriminant Proposition 2 provides a necessary condition for the existence of linear 
Riley equilibria. For the rest of the paper, we focus on non-negative discriminant games. We 
relegate the discussion of negative discriminant games to Online Appendix.

10 The case where k1 < 0 is symmetric. Then it must be true that t ∈ (0, −k1).
8
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Bliss point

θ

aS
2 (θ)

aR(θ)

m Mθ0

a1

θ
m Mθ0

Linear strategy

aS
1 (θ)

m′

Nonlinear strategy

Fig. 2. Bliss point (left) and Sender’s strategy (right) for r > 0.

4.2. Riley equilibria

We next solve for Riley equilibria. First, the Characterization Proposition 1 identifies the 
whole class of IC separating strategies. Second, we pin down the IC separating strategy that 
maximizes the sender’s payoff at every state. Third, we construct a PBE in which this optimal IC 
separating strategy is played. As the separating PBE is a more demanding notion than incentive 
compatibility, the PBE constructed must be the dominant separating PBE.

Theorem 2. In non-negative discriminant quadratic games, there exists a unique Riley equilib-
rium. In this equilibrium, the sender’s strategy is

1. continuous and monotonic,
2. differentiable on (m, M),
3. linear if and only if r > 0 and θ0 ∈ �.

We fully solve for Riley equilibrium strategy’s closed form in Appendix C. Here we illustrate 
the intuition for the sufficient and necessary condition of linearity. Recall that the linear IC strat-
egy must cross (θ0, 0) by the Discriminant Proposition. When θ0 /∈ �, the strategic distortion 
of the linear IC strategy is nonzero on �. Therefore, we can always find some other solution to 
equation (2) with a uniformly smaller strategic distortion once we carefully set the initial value 
to be S(m) = 0 or S(M) = 0. Now suppose that θ0 ∈ �. The more interesting question is why 
the condition for linearity also requires r > 0.

Consider the case of r > 0; that is, k2 > 1. To counterbalance the belief-manipulation incen-
tive, the strategic distortion of an IC separating strategy must deter the sender from inducing a 
belief farther away from θ0. Let us consider a state θ > θ0. As the belief-manipulation incentive

∂

∂θ̂
[−δ(θ̂ − k2θ − b2)

2]
∣∣∣∣
θ̂=θ

depends only on the state, the marginal cost of inducing a belief farther away from θ0,

∂

ˆ [(σ (θ̂) − aS
1 (θ))2]

∣∣∣∣ ,

∂θ θ̂=θ

9
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Bliss point

θ

aS
2 (θ)

aR(θ)

m Mθ0

a1

θ
m Mθ0

aS
1 (θ)

Linear strategy

Nonlinear strategy

Fig. 3. Bliss point (left) and Sender’s strategy (right) for r < 0.

must be the same for all IC strategies. This implies that if an IC strategy induces a smaller 
strategic distortion |σ(θ) − aS

1 (θ)|, it must have a larger derivative. This is shown in Fig. 2, in 
which we plot the linear IC strategy and a nonlinear strategy with a smaller strategic distortion.11

As θ0 ∈ �, the nonlinear strategy that has a larger derivative cannot be extended with full support 
�. This in turn implies that when θ0 ∈ �, all supported nonlinear IC strategies are farther from 
the bliss point aS

1 compared to the linear IC strategy and hence are uniformly dominated.
In the case of r < 0—that is, k2 < 1—the strategic distortion of an IC separating strategy must 

deter the belief-manipulation incentive. In Fig. 3, we plot the linear IC strategy and a nonlinear 
IC strategy with a smaller strategic distortion. Suppose that θ > θ0. As the strategic distortion is 
smaller in the nonlinear IC strategy, as θ decreases, the nonlinear IC strategy must diverge from 
the bliss point faster and tends to the linear strategy. Thus, we can have a nonlinear IC strategy 
that dominates the linear strategy.

Remark 1. In Online Appendix, we study negative discriminant quadratic games. We find that 
when θ0 /∈ �, there exists a unique Riley equilibrium where the sender’s strategy is nonlinear, 
continuous, monotonic, and differentiable. And when θ0 ∈ �, there is no continuous incentive-
compatible separating strategy and, moreover, a separating PBE might not exist.

5. Applications

Quadratic signaling games include the game studied in Argenziano and Bonatti (2021) and 
the examples in Kartik et al. (2007). With slight mathematical manipulation, they also include 
the game in Hermalin (1998). In this section, we apply our results to investigate examples in the 
literature.

5.1. Leading by example

The classic model of leadership in Hermalin (1998) studies how a leader incentivizes employ-
ees to exert effort on a project. Since the firm benefits from all effort, the leader is motivated to 

11 Notice that if θ0 /∈ � and � is bounded below by m′ > θ0, the nonlinear strategy is indeed an IC separating strategy 
that uniformly dominates the linear IC strategy.
10
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tell employees that all projects deserve their maximum effort. Consequently, rational employ-
ees disregard the leader’s call. Nevertheless, the leader herself can exert high effort and thereby 
incentivize her followers to do the same.

In the model, a team contains N identical workers, including a leader. Each worker n exerts 
effort en towards a common endeavor. The value of the common endeavor is V = θ

∑N
n=1 en, 

where θ ∈ � = [0, 1] denotes a random productivity factor.
A worker’s utility is sw × V − 1

2e2, where sw denotes the worker’s share, sw × V denotes his 
wage, and 1

2e2 is the disutility from exerting effort. The leader’s utility is sl × V − 1
2e2, where 

sl + (N −1)sw = 1. The leader privately observes θ and publicly exerts effort. The other workers 
make inferences concerning θ based on the leader’s effort. Let e(θ) denote the leader’s strategy 
in equilibrium, and θ̂ denote the followers’ belief. Each worker n solves the following problem:

max
en

⎡
⎣swθ̂(en +

∑
j �=n

ej ) − e2
n

2

⎤
⎦ .

They do so by choosing en = swθ̂ . Therefore, the leader’s payoff from exerting effort e when the 
state is θ and the followers infer θ̂ is given as follows:

V (θ, θ̂ , e) = slθ(e + (N − 1)swθ̂) − e2

2
.

The leader solves

max
e(θ̂)

[
slθ(e(θ̂) + (N − 1)swθ̂) − e2(θ̂ )

2

]

with the first-order condition

e′(θ) = sl(1 − sl)θ

e − slθ
,

which satisfies differential equation (2). Matching coefficients, we have r = sl(1 − sl) > 0, 
θ0 = 0 ∈ �. Therefore, by Theorem 2, the unique Riley equilibrium is linear, which coincides 
with Lemma 3 and Proposition 5 of Hermalin (1998).12 Yet this result hinges critically on the 
assumption that � = [0, 1]. If the productivity factor is bounded away from 0 (for example, 
� = [1, 2]), then θ0 = 0 /∈ �. By Theorem 2, Riley equilibrium is no longer linear. This case is 
not analyzed by Hermalin (1998).

To deepen our understanding, we rewrite the leader’s problem as follows:

V (θ, θ̂ , e) = −1

2
(e − slθ)2 + 1

2
s2
l θ2 + rθ θ̂ .

If the leader is myopic and ignores the inferential impact of his effort, he optimally chooses 
e = slθ—that is, his bliss point. A strategic leader can benefit from inducing a higher belief θ̂ . The 
marginal benefit of inducing a higher belief is ∂V

∂θ̂
= rθ , where r is the marginal impact. Thus, 

the higher the productivity factor θ , the stronger the incentive. As the leader desires to induce a 
higher belief, e = slθ cannot be sustained in equilibrium and his effort is biased upward. But as 
his effort diverges from his bliss point e = slθ , it incurs a cost in − 1

2 (e − slθ)2. In equilibrium, 

12 Zhou (2016) uses Hermalin’s (1998) model to explore leadership within hierarchical organizations. His analysis 
heavily depends on the linear equilibrium.
11
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e

θ

Linear strategy

Bliss point slθ

Riley equilibrium

1 2

Fig. 4. The Leader’s strategy for � = [1,2].

for all separating strategies, the marginal cost of exerting more effort must equal the marginal 
benefit of inducing a higher belief. Among these strategies, the strategy in Riley equilibrium is 
closest to the leader’s bliss point e = slθ .

Suppose that � = [1, 2]. Riley equilibrium is between the leader’s bliss point and the 
incentive-compatible linear strategy (Fig. 4) and therefore features a uniformly lower effort than 
the incentive-compatible linear strategy.13 In the linear strategy, the marginal cost of inducing a 
higher belief

∂

∂θ̂
[−1

2
(e(θ̂ ) − slθ)2]

∣∣∣∣
θ̂=θ

is a first-order effect, as e(θ) − slθ > 0 for all θ ∈ �. The linear slope is pinned down such that 
this first-order effect counterbalances the marginal benefit rθ . By contrast, Riley equilibrium 
features e(1) = sl . If e(θ) were to increase linearly, the marginal cost of inducing a higher belief

∂

∂θ̂
[−1

2
(e(θ̂ ) − slθ)2]

∣∣∣∣
θ̂=θ

would be zero at θ = 1 (a second-order effect), which falls short of the nonzero marginal benefit. 
Thus, as θ approaches 1, the slope of e(θ) tends to infinity. As θ increases, e(θ) diverges away 
from slθ . As the strategic distortion e(θ) −slθ increases, it requires less of an increment in e(θ) −
slθ to counterbalance the marginal benefit. But as the strategic distortion in Riley equilibrium is 
smaller than that of the linear strategy, the slope e′(θ) of Riley equilibrium is larger than that 
of the linear strategy. Therefore, Riley equilibrium strategy converges to the linear strategy as θ
increases. Consequently, Riley equilibrium is nonlinear.

What is different when � = [0, 1]? If � = [0, 1], then at θ = 0, the marginal benefit of in-
ducing a higher belief, rθ , is also zero, which allows the linear strategy with e(0) = 0 to grow 
linearly at θ = 0. As the linear strategy satisfies the initial condition e(0) = 0, the linear strategy 
coincides with Riley equilibrium.

13 See the closed form in the proof of Theorem 2 in Appendix C.
12



X. Weng, F. Wu and X. Yin Journal of Economic Theory 213 (2023) 105733
5.2. Data linkages

Argenziano and Bonatti (2021) consider a dynamic model of behavior-based price discrim-
ination. (They use a different solution concept—Bayesian Nash equilibrium.14) A consumer 
sequentially interacts with two firms. In each period t ∈ {1, 2}, the active firm sets a price pt

and a quality level yt and the consumer chooses the quantity qt to consume. A data linkage al-
lows the second firm to observe the first-period interaction outcome (p1, y1, q1). After observing 
the outcome, the second firm tailors its quality level and price to the consumer’s type.

In each period, the consumer’s utility is given by

U(pt , yt , qt ) = (θ + btyt − pt)qt − q2
t

2
,

where the consumer’s type θ ∈ � = [m, M] is his baseline consumption level before adjusting 
for price and quality, bt ∈ [0, 

√
2) is common knowledge and represents the sensitivity of the 

consumer’s valuation to the quality of firm t’s product, and btyt − pt is the terms of trade that 
firm t offers to the consumer. Firm t’s profits are

�(pt , yt , qt ) = ptqt − y2
t

2
.

To maximize profits, the second firm sets its terms of trade to be λ2θ̂ (we skip the calculations), 

where θ̂ is the inferred type and λ2 = b2
2−1

2−b2
2

∈ [− 1
2 , ∞). Given first-period consumption q1 and 

inference θ̂ , the type-θ consumer’s payoff is

V (θ, θ̂ , q1) = (θ + b1y1 − p1)q1 − q2
1

2
+ 1

2
(θ + λ2θ̂ )2.

Therefore, the consumer solves the problem

max
q1(θ̂)

[ (θ + b1y1 − p1)q1(θ̂ ) − q2
1 (θ̂)

2︸ ︷︷ ︸
first-period utility

+ 1

2
(θ + λ2θ̂ )2︸ ︷︷ ︸

second-period utility

]. (4)

Matching the coefficients to our model (1), we have r = λ2(1 + λ2), θ0 = 0. Let S = q1 − (θ +
b1y1 − p1). There are two linear IC strategies S = λ2θ and S = −(λ2 + 1)θ . By Theorem 2, in 
Riley equilibrium, the consumer’s strategy is linear iff λ2 > 0 and 0 ∈ �. When Riley equilibrium 
is indeed linear, it coincides with the linear BNE of Proposition 2 in Argenziano and Bonatti 
(2021).

Yet our Theorem 2 implies that Riley equilibrium can be nonlinear.15 We plot the remaining 
cases in Fig. 5. In the first period, the consumer strategically consumes less than his ideal quan-

14 They require the firm’s strategy to be linear even off the path as in Ball (2021). See footnote 6 in Argenziano and 
Bonatti (2021) for more details.
15 When λ2 < 0, Riley equilibrium strategy is

(S − λ2θ)λ2

[S + (λ2 + 1)θ]−(λ2+1)
= (−λ2M)λ2

(λ2M + M)−(λ2+1)
(S ≤ 0).

When λ2 > 0 and 0 /∈ �, Riley equilibrium is

(λ2θ − S)λ2

−(1+λ )
= (λ2m)λ2

−(1+λ )
(S ≥ 0).
[S + (1 + λ2)θ] 2 [(1 + λ2)m] 2

13
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q1

θ

Riley equilibrium

q1 = θ + b1y1 − p1

0 m M

q1

θ

q1 = θ + b1y1 − p1

0 Mm

Riley equilibrium

Fig. 5. Consumer’s strategy for λ2 < 0 (left), λ2 > 0 and 0 /∈ � (right).

tity θ + b1y1 − p1 if λ2 < 0 but consumes more than his ideal quantity if λ2 > 0. When λ2 < 0, 
the second firm’s terms of trade λ2θ̂ are decreasing in belief. As the consumer’s second-period 
utility is 1

2 (θ + λ2θ̂ )2, the consumer bears a cost of inducing a higher belief. In equilibrium, as 
the consumer consumes less than the ideal quantity, the marginal benefit of consuming more in 
the first period must counterbalance the marginal cost of inducing a higher belief in the second 
period. By contrast, when λ2 > 0, the consumer benefits from inducing a higher belief. In equi-
librium, as the consumer consumes more than the ideal quantity, the marginal cost of consuming 
more in the first period must counterbalance the marginal benefit of inducing a higher belief in 
the second period.

5.3. Strategic communication with lying costs

Kartik (2009) and Kartik et al. (2007) analyze a model of strategic communication between 
an informed but upwardly biased sender (he) and an uninformed receiver (she). The sender bears 
a cost of misreporting or lying about his private information. The cost may stem from moral 
constraints, legal penalties, or fabrication costs. In this setting, the sender may employ inflated 
language, where by inflated we mean that the sender’s message is biased above the state. To 
preserve the flavor of inflated language in equilibrium without getting into technical details, we 
assume that � = [0, 1] as in Kartik (2009).

In the model, a sender is privately informed about the state θ ∈ �. After observing the state, 
he sends a message m to a receiver, who then takes an action a2. The sender’s payoff is

US = −k(m− θ)2 − (a2 − aS
2 (θ))2,

where aS
2 (θ) = λθ + b is his ideal action for the receiver and k(m − θ)2 denotes the cost of lying 

when the state is θ and the message is m. The receiver’s payoff is maximized when her action 
a2 matches the state—that is, aR(θ) = θ . Given the receiver’s best response, the sender gets a 
payoff of

V (θ, θ̂ ,m) = −k(m− θ)2 − [θ̂ − (λθ + b)]2

We need to additionally check whether the strategy in Theorem 2 satisfies problem (4)’s second-order condition. It turns 
out to be true for both of the above solutions.
14
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m

θ

Riley equilibrium

aS
2 = λθ + b

aR
2 = θ

0 θ0 1

m

θ

aS
2 = λθ + b

aR
2 = θ

0 θ0 1

Riley equilibrium

Fig. 6. Sender’s strategy when θ0 ∈ �. λ > 1 (left) and λ < 1 (right).

when the receiver’s belief is θ̂ . Plugging in the coefficients from our model (1), we get r = λ−1
k

and θ0 = − b
λ−1 .

Kartik et al. (2007) consider the case where λ = 1 and b > 0. By Theorem 2, the sender’s 
strategy is

m+ b

k
ln(

b

k
−m+ θ) = b

k
ln(

b

k
),

which is nonlinear. It coincides with solution (6) in Kartik et al. (2007). The language in equilib-
rium is inflated, as m ≥ θ .

Yet this feature of inflated language relies critically on local belief monotonicity—that is, 
aS

2 (θ) > aR(θ) for all θ ∈ �. (See Section 6 for a formal definition of belief monotonicity.) What 
happens if the sender’s most-preferred action aS

2 (θ) is biased upward for some states but biased 
downward for other states? Then, the sender may employ either inflated or deflated language and 
the direction of language distortion depends only on how the sender’s bliss point aS

2 (θ) is biased 
from the receiver’s ideal point aR(θ). In particular, the language is inflated (deflated) whenever 
the sender’s bliss point is above (below) the state.

Proposition 3. In Riley equilibrium, the sender’s language is inflated at θ if and only if aS
2 (θ) >

aR(θ).

This result is not limited to the model of lying cost. A similar conclusion holds for all quadratic 
signaling games. By Theorem 2, Riley equilibrium is linear if and only if λ > 1 and θ0 ∈ �. In 
Fig. 6, we plot the case for λ > 1 when Riley equilibrium is linear and the case for λ < 1 when 
Riley equilibrium is nonlinear. We can see that the direction of the language distortion is indeed 
aligned with the direction of the preference bias aS

2 (θ) − aR(θ).

5.4. Transferable control and learning by delegation

The classic delegation problem considers a principal (she) who faces an informed but biased 
agent (he). The principal delegates control to the agent to use his local knowledge and is unable 
15
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Fig. 7. Dominant delegation. This figure is drawn for k1 = k2 = 1, b1 = b2 = 0.2, δ = 0.5.

to commit to contingent transfers. In many real-life examples, the principal cannot contractu-
ally commit to relinquishing control in the future (Aghion et al., 2004). After learning the local 
knowledge from the agent’s decision, the principal can reclaim control and make decisions by 
herself. Aghion et al. (2004) study transferable control and learning by delegation when the state 
is discrete. In this section, we study the same problem when the state is continuous.

In a two-period delegation model, the principal delegates control in the first period and re-
claims control in the second one. Let θ ∈ � = [0, 1] denote the state of the world. In the first 
period, the agent privately observes the state θ and makes a decision a1 ∈ R. In the second pe-
riod, the principal makes a decision a2 ∈ R based on the agent’s decision a1. The principal’s 
and agent’s payoffs depend on the implemented decisions and the state. The principal wants her 
decision a2 to match the state, while the agent’s ideal point is aS

1 = aS
2 = θ + b, where b > 0

measures the preference bias. The agent’s payoff is US = −(a1 − θ − b)2 − δ(a2 − θ − b)2.
Given the principal’s belief θ̂ , the agent’s payoff is

V (θ, θ̂ , a1) = −(a1 − θ − b)2 − δ(θ̂ − θ − b)2.

Matching the coefficients to model (1), we have r = 0. By Theorem 2, Riley equilibrium is 
nonlinear (see Fig. 7):

θ + S + δb ln(δb − S) = δb ln(δb).

As δ tends to zero, Riley equilibrium degenerates to the standard static delegation

a1 = θ + b

as in Dessein (2002).
Thus far, we have focused on Riley equilibrium that maximizes the sender’s (i.e., the agent’s) 

payoff at every state. In this example, we explore how the receiver (i.e., the principal) ranks 
different separating PBE. Does Riley equilibrium yield the highest possible expected payoff to 
the principal? To address this question, it is necessary to impose some assumptions on the state 
distribution and on the principal’s preference about a1. As an extension of the classic example 
in Crawford and Sobel (1982), we assume that the state is uniformly distributed and that UR =
−(a1 − θ)2 + g(θ, a2), where g(θ, a2) is maximized at a2 = θ for all θ . In this setting, we can 
show that Riley equilibrium is also optimal for the principal among all separating equilibria.
16
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Proposition 4. If the state is uniformly distributed, Riley equilibrium is optimal for the principal.

By the proof of Theorem 2, we can analytically solve for all IC strategies. Some of them 
are discontinuous. To prove Proposition 4, we first show that all discontinuous strategies are 
Pareto-dominated by the linear strategy. (The linear strategy is increasing.) Second, we show that 
all decreasing continuous strategies are inadmissible for any PBE. Third, among all increasing 
continuous strategies, we show that Riley equilibrium is uniformly closest to the principal’s ideal 
point.

6. Concluding remarks

This paper studied Riley equilibria in quadratic signaling games. We derived a necessary and 
sufficient condition for the existence and uniqueness of a linear Riley equilibrium. One assump-
tion we imposed is a quadratic form of the preference. This form succinctly captures some key 
properties of concave preferences and allows for closed-form solutions. Nevertheless, a natural 
direction for future research is to generalize our conclusions beyond quadratic games.

In this section, we conclude our paper by showing why quadratic signaling games do not 
necessarily satisfy some widely adopted assumptions in the literature, including the belief mono-
tonicity and single-crossing conditions. Then we explore some properties of Riley equilibrium in 
quadratic signaling games.

6.1. Belief monotonicity

In the literature (see, for example, Mailath, 1987; Roddie, 2011; Kartik et al., 2007), the 
belief-monotonicity assumption states that

V2(θ, θ̂ , a1) �= 0 ∀(θ, θ̂ , a1),

where subscripts on functions denote derivatives. That is, the sender always prefers a higher 
(lower) belief, regardless of the state, the belief, and his action. Belief monotonicity is satis-
fied if and only if aS

2 (θ) /∈ � for all θ ∈ �. To see this, if aS
2 (θ) ∈ � for some θ ∈ �, then 

V2(θ, aS
2 (θ), a1) = 0 for all a1. In the delegation example, as long as b is sufficiently small, there 

exists some θ ∈ � such that aS
2 (θ) ∈ �.

Kartik et al. (2007) consider a weaker condition

V2(θ, θ, a1) �= 0 ∀(θ, a1),

which we call local belief monotonicity. That is, given a correct belief, the sender always prefers 
a slightly higher (lower) belief, regardless of the state and his action. Local belief monotonicity 
is satisfied if and only if θ0 /∈ �, as V2(θ, θ, a1) = 0 if and only if θ = θ0.

6.2. Single-crossing condition

We show that our model does not necessarily satisfy the single-crossing condition. A function 
V (θ, θ̂ , a1) satisfies single-crossing if when θ1 < θ2 and θ̂1 < θ̂2: V (θ1, θ̂1, a1) ≤ V (θ1, θ̂2, a′

1)

and a1 ≤ a′
1 imply V (θ2, θ̂1, a1) ≤ V (θ2, θ̂2, a′

1), and strictness in either inequality implies 
V (θ2, θ̂1, a1) < V (θ2, θ̂2, a′ ). A function V (θ, θ̂ , a1) satisfies strong single-crossing if, when 
1
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θ1 θ2

Fig. 8. Players’ Bliss points.

θ1 < θ2, V (θ1, θ̂1, a1) ≤ V (θ1, θ̂2, a′
1) and a1 ≤ a′

1 imply V (θ2, θ̂1, a1) ≤ V (θ2, θ̂2, a′
1), and strict-

ness in either inequality implies V (θ2, θ̂1, a1) < V (θ2, θ̂2, a′
1). Strong single-crossing implies 

single-crossing. Moreover, the Spence–Mirrlees single-crossing condition implies strong single-
crossing (Cho and Sobel, 1990).

Consider a setting in which aR(θ) = aS
1 (θ) = θ and aS

2 (θ) has a negative slope. We set θ̂1 =
θ1 < θ0, θ2 such that aS

2 (θ2) = θ̂1, and θ̂2 such that θ̂2 = aS
2 (θ1) (see Fig. 8). Obviously θ1 < θ2

and θ̂1 < θ̂2. Next we set a′
1 = aS

1 (θ1) + d , a1 = aS
1 (θ1) − d , for some d > 0. By construction, 

we have a′
1 > a1 and V (θ1, θ̂1, a1) < V (θ1, θ̂2, a′

1), which also holds if we replace θ1 by θ̃2 > θ1
sufficiently close to θ1. But

V (θ2, θ̂2, a
′
1) − V (θ2, θ̂1, a1) = 4d(θ2 − θ1) − δ(θ̂2 − θ1)

2.

Since d > 0 can be made arbitrarily small, we have V (θ2, θ̂1, a1) > V (θ2, θ̂2, a′
1) for some suffi-

ciently small d .

6.3. Comparative static analysis

We now perform a comparative static analysis. To begin, we illustrate the sender’s manipu-
lation incentives. In any separating equilibrium, the sender’s action a1 signals his type. We let 
μ(a1) express the belief’s dependence on the sender’s action. He solves the following problem:

max
a1

[−(a1 − k1θ − b1)
2 − δ(μ(a1) − k2θ − b2)

2]

The sender thereby faces a trade-off between optimizing his action a1 and manipulating θ̂ . The 
strength of such manipulation incentives hinges on δ and the sensitivity of the belief μ(a1). The 
greater δ, the stronger the manipulation incentive, which leads to a larger strategic distortion.

Proposition 5. Suppose that the discriminant is non-negative. In Riley equilibrium, |S| is in-
creasing in δ.

6.4. Properties of Riley equilibrium

In this subsection, we highlight some properties of Riley equilibrium. First, given belief mono-
tonicity, we illustrate how Riley equilibrium is consistent with the classic initial condition of 
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Mailath (1987). This condition requires that S(θw) = 0, where θw is the worst type—that is, the 
worst point belief the receiver can hold. For instance, if V2(θ, θ̂ , a1) > 0 for all (θ, θ̂ , a1), then 
θw = m. In Mailath (1987), this condition and incentive compatibility together can uniquely pin 
down an equilibrium. We show that this initial condition is implied by Riley equilibrium, given 
belief monotonicity. Second, we generalize this result as we gradually relax belief monotonicity.

The initial condition is justified by sequentiality. That is, since θw is the worst belief, if 
S(θw) �= 0, a deviation by S(θw) �= 0 to S(θw) = 0 cannot be credibly punished in equilibrium. 
However, sequentiality is a pure equilibrium-refinement condition and hence does not explain 
why the sender does so in the first place.

To connect our discussion to Mailath (1987), consider a setting satisfying belief monotonic-
ity. Without loss of generality, we take aS

2 (θ) > M for all θ as an illustration. In this setting, 
V2(θ, θ̂ , a1) > 0 for all (θ, θ̂ , a1). Thus, the worst type θw = m. Then Riley equilibrium features 
S(m) = 0. That is, the traditional initial condition is implied by the optimality of the sender’s 
strategy. That is, the initial condition comes as part of Riley equilibrium.

To generalize this result, let us modify the above example. Without loss of generality, consider 
k2 > 1 and aS

2 (m) ∈ �. Then the belief monotonicity condition is violated. Riley equilibrium in 
this setting still features S(m) = 0. But how do we extrapolate from the above intuition? The 
answer lies in local belief monotonicity. In this example, since V2(θ, θ, a1) > 0 for all (θ, a1), we 
can similarly define a generalized worst type θw = m, and Riley equilibrium still has S(θw) = 0.

What happens if the local belief monotonicity is violated? This occurs if and only if θ0 ∈ �. In 
this situation, Riley equilibrium features S(θ0) = 0. Yet it is inappropriate to view this as an initial 
condition since θ0 is a singularity of the differential equation. At θ = θ0, in the Riley equilibrium, 
the sender obtains the maximum payoff possible, US = 0. That is, the sender achieves his ideal 
points for both a1 and a2. Since preferences are aligned at θ0, the sender willingly reveals his 
type. Then the receiver takes the action most beneficial for both of them.

We can summarize the above discussion in the following proposition. Let θw denote the gen-
eralized worst type when local belief monotonicity holds. Formally, θw = m if V2(θ, θ, a1) > 0
for all (θ, a1), and θw = M if V2(θ, θ, a1) < 0 for all (θ, a1).

Proposition 6. Suppose that the discriminant is non-negative. In Riley equilibrium, S(θw) = 0 if 
local belief monotonicity holds, and S(θ0) = 0 otherwise.
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Appendix A. Solutions to differential Equation (2)

We start by solving differential equation (2). The solutions will be useful later. We solve it 
case by case.

Analysis for r = 0
The DE reduces to

S(θ)
dS(θ) = (δb2 − k1S(θ)).
dθ
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The solution is as follows:

k2
1θ + k1S(θ) + δb2 ln |δb2 − k1S(θ)| = C.

A special solution is k1S(θ) = δb2.
Analysis for r �= 0

Define φ � θ − θ0. DE (2) is

S(φ)[dS(φ)

dφ
+ k1] = rφ. (5)

It is centrosymmetric around (φ, S) = (0, 0). Let w(φ) � S(φ)
φ

. DE (5) reduces to

w(φ)

w2(φ) + k1w(φ) − r

dw(φ)

dφ
= − 1

φ
. (6)

The form of general solutions depends on �. A linear solution exists if and only if � ≥ 0. If 
� > 0, there exist two linear special solutions, S = w1φ and S = w2φ, where w1 and w2 denote 
solutions to the equation w2 +k1w−r = 0. Without loss of generality, let us assume |w1| ≤ |w2|.

w1 + w2 = −k1 (7)

w1 × w2 = −r (8)

We further rewrite DE (6):

w(φ)dw(φ)

(w(φ) − w1)(w(φ) − w2)
= −dφ

φ

w1

w1 − w2

dw(φ)

w(φ) − w1
− w2

w1 − w2

dw(φ)

w(φ) − w2
= −dφ

φ

The general solutions take the form

|S(φ) − w1φ|w1

|S(φ) − w2φ|w2
= C. (9)

If � = 0, there is a unique linear special solution S(φ) = w1φ, where w1 = w2 = − k1
2 is the 

solution for equation w2 + k1w − r = 0. We further rewrite DE (6) as

w(φ)dw(φ)

(w − w1)2 = −dφ

φ

dw(φ)

w(φ) − w1
+ w1dw(φ)

(w(φ) − w1)2 = −dφ

φ
.

The general solutions take the form

ln |S(φ) − w1φ| − w1φ

S(φ) − w1φ
= C. (10)

If � < 0, define q � 1
2

√−�, z(φ) � w(φ) + k1
2 . We rewrite DE (6) as follows:

w(φ)dw(φ)

(w(φ) + k1
2 )2 − �

4

= −dφ

φ

zdz

2 2 − k1 dz

2 2 = −dφ
z + q 2 z + q φ
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The general solutions are

ln |S2 + k1Sφ − rφ2| − k1

q
arg tan(

S

qφ
+ k1

2q
) = C. (11)

Appendix B. Omitted proofs in Section 3

We first prove four Lemmas. Then the proof of Proposition 1 follows.

Lemma 1. Continuity. Suppose a separating strategy S is incentive compatible. Then |S| is 
continuous.

Proof of Lemma 1. If the function |S| is discontinuous at θ̃ , the sender’s equilibrium payoff 
−S2(θ) − δ(θ − aS

2 (θ))2 is also discontinuous at θ̃ . Then incentive compatibility fails in an 
arbitrarily small neighborhood of θ̃ . Thus, the function |S| must be continuous everywhere. �

For the next three lemmas, we only prove the case where k1 > 0. The other case is symmetric 
around the θ -axis.

Lemma 2. Aligned Monotonicity.

1. Suppose k1 > 0. For any θ ∈ �, if there exists a sequence θn → θ and θn ≤ θ for all n such 
that S(θn) > 0, then S(θ) ≥ 0.

2. Suppose k1 > 0. For any θ ∈ �, if there exists a sequence θn → θ and θn ≥ θ for all n such 
that S(θn) < 0, then S(θ) ≤ 0.

Proof of Lemma 2. Since the proofs of these two claims are similar, we just prove the first one.
By way of contradiction, suppose S(θ) < 0. Take θn, θm from the sequence. Let θn �= θm tend 

to θ , by |S| being continuous, S(θn) → |S(θ)|, S(θm) → |S(θ)|. We first prove

lim
n,m→∞

S(θn) − S(θm)

θn − θm

= rθ + δb2

|S(θ)| − k1.

Let T (θ) = rθ+δb2|S(θ)| − k1. Suppose there exists an ε > 0 such that for any N > 0, there exists 
n, m > N with θn �= θm such that

|S(θn) − S(θm)

θn − θm

− T (θ)| > ε.

If
S(θn) − S(θm)

θn − θm

> T (θ) + ε,

U (θm; θn) − U (θn; θn) > 2ε|S(θ)(θn − θm)| +O((θn − θm)2);
if

S(θn) − S(θm)

θn − θm

< T (θ) − ε,

U (θn; θm) − U (θm; θm) > 2ε|S(θ)(θn − θm)| +O((θn − θm)2),

which contradicts incentive compatibility when |θn − θm| is sufficiently small.
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Then fix an n and let m → ∞. We have

S(θn) = |S(θ)| − (
δb2 + rθ

|S(θ)| − k1)(θ − θn) +O((θ − θn)
2). (12)

By the definition of U ,

U (θ; θn) = −[|S(θ)| − k1(θ − θn)]2 − δ(θ − k2θn − b2)
2,

U (θn; θn) = −S2(θn) − δ(θn − k2θn − b2)
2.

By (12), the difference

U (θ; θn) − U (θn; θn) = 4k1|S(θ)|(θ − θn) −O((θ − θn)
2) > 0

when θ − θn is sufficiently small. This implies that if S(θ) < 0, the sender at sufficiently close 
θn has incentive to mimic θ ; hence the incentive-compatibility constraint fails. So it must be true 
that S(θ) ≥ 0. �
Lemma 3. Jump. Suppose a separating strategy is incentive compatible. If it is discontinuous, at 
any discontinuity, both left and right limits exist and the jump direction has the same sign as k1.

Proof of Lemma 3. As |S| is continuous, |S(θ−)| = |S(θ)| = |S(θ+)|. Suppose S(θ) is dis-
continuous at y. Then |S(y)| �= 0. It suffices to prove the case of S(y) > 0. The other case is 
symmetric. Suppose S(y) > 0. By the contrapositive of the second point of Lemma 2, there ex-
ists an ε > 0 such that S(θ) ≥ 0 for all θ ∈ (y, y + ε). Since |S| is continuous, the right limit 
S(y+) exists and S(y) = S(y+) > 0. Then either S(y−) does not exist or S(y−) exists and 
S(y−) = −S(y+). Next we show that S(y−) exists.

By way of contradiction, suppose S(y−) does not exist. As |S| is continuous, there exists a 
sequence yn → y and yn < y such that S(yn) > 0. Take a ym sufficiently close to y such that 
|S(θ)| > 0 for all θ ∈ [ym, y]. Define

x � sup{θ ′ ∈ �|S is continuous on (ym, θ ′)}.
By the contrapositive of the second point of Lemma 2 and S(ym) > 0, x > ym. And since S(y−)

does not exist, x < y. If S(x) > 0, by the contrapositive of the second point of Lemma 2, there 
exists an ε′ > 0 such that S(θ) ≥ 0 for all θ ∈ (x, x + ε′). This implies S is continuous on 
θ ∈ (ym, x + ε′), contradicting the definition of x. If S(x) < 0, by the contrapositive of the first 
point of Lemma 2, there exists an ε′′ > 0 such that S(θ) ≤ 0 for all θ ∈ (x − ε′′, x), contradicting 
the definition of x. �
Lemma 4. Differentiability. Suppose a separating strategy S is incentive compatible. Then at 
every point in (m, M) where S is continuous, S is differentiable and satisfies (2) and (3).

Proof of Lemma 4. The proof of Theorem 1 in Mailath (1987) establishes the differentiability 
of S when S(θ) �= 0.16 Next we analyze the case when S is zero. Suppose S is continuous at 
some t ∈ (m, M) and S(t) = 0.

16 On page 1361 of Mailath (1987), the proof of Theorem 1 consists of four propositions. Proposition 2 proves differ-
entiability. To adopt his proof, we only need to redefine his Y to be Y � {y ∈ R : ∃θ, V (θ, θ, y) ≥ V (θ, m, σ(m)}.
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Fig. 9. Solutions for r > 0. This figure is drawn for k1 = 1, k2 = 1.5, b1 = b2 = δ = 0.5.

First, we rule out the case in which k2t + b2 �= t (t �= θ0). Suppose k2t + b2 < t . (The case in 
which k2t + b2 > t is proven symmetrically.) Take an ε > 0 sufficiently small such that k2(t +
ε) + b2 < t + ε. Then the sender at state t + ε has a strict incentive to mimic state t since

U (t; t + ε) − U (t + ε; t + ε) = S2(t + ε) + 2δ(t − k2t − b2)ε +O(ε2),

which is strictly positive as ε is small, contradicting incentive compatibility.
For the remaining proof, we assume k2t + b2 = t . Suppose r = 0; then k2 = 1 and b2 = 0. 

Then by DE (2), the sender’s strategy is S = 0, which is differentiable. Suppose r �= 0. As k2 �= 1, 
it must be true that t = θ0. For any θ �= θ0, by the first part, S(θ) �= 0. By the Jump Lemma, there 
exists an ε′ such that S is continuous on (t − ε′, t + ε′). As S is nonzero and continuous on 
(t − ε′, t), the behavior of S is governed by differential equation (2). Now we analyze this case 
by case in terms of �. It is impossible that � < 0 since no separating solution (11) crosses 
(θ, S) = (θ0, 0).17 Now suppose � ≥ 0. If r > 0, only two linear solutions cross (θ, S) = (θ0, 0)

(Fig. 9), and they are differentiable. Supposing r < 0, all solutions cross (θ, S) = (θ0, 0). As 
linear solutions are always differentiable, we only need to show that nonlinear solutions are 
differentiable at θ0. We prove the stronger result that the derivative of all nonlinear solutions is 
w1.

Let us analyze the right derivative of all nonlinear solutions at θ0. Take a sufficiently small 
ε′′. It must be true that S(θ)

θ−θ0
∈ (w1, 0) for all θ ∈ (θ0, θ0 + ε′′) or S(θ)

θ−θ0
∈ (w2, w1) for all θ ∈

(θ0, θ0 + ε′′) (Fig. 10). It suffices to consider S(θ)
θ−θ0

∈ (w1, 0) for all θ ∈ (θ0, θ0 + ε′′). Take a 
nonlinear solution S and let

T � inf
θ∈(θ0,θ0+ε′′)

S (θ)

θ − θ0
.

17 For any integral constant C, the integral curve infinitely swirls around the singularity (θ, S) = (θ0, 0) while approach-
ing it. We discuss this case thoroughly in Online Appendix.
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Fig. 10. Solutions for r < 0, � > 0. This figure is drawn for k1 = 1, k2 = 0.8, b1 = δ = 0.5, b2 = 0.1.

By design, T ∈ [w1, 0]. As dS
dθ

is uniquely determined by S (θ)
θ−θ0

(recall dS
dθ

= r(θ−θ0)
S

− k1) and 
d2S
dθ2 > 0 for S(θ)

θ−θ0
∈ (w1, 0) and θ > θ0,18 for any z close to T and z > T , integral curve S

crosses Z(θ) = z(θ − θ0) on (θ0, θ0 + ε′′) at most once and can only cross from below; that is, 
∃εz > 0 such that for all θ ∈ (θ0, θ0 + εz), 

S (θ)
θ−θ0

∈ [T , z). Let z → T +. Then for θ ∈ (θ0, θ0 + εz), 
S (θ)
θ−θ0

→ T and S (θ)−S (θ0)
θ−θ0

→ T . Plugging these two into differential equation (2), we have 
T + k1 = r

T
. And by T ∈ [w1, 0), T = w1. Thus the right derivative exists and is w1. A similar 

argument goes for the left derivative. �
Proof of Proposition 1. The necessity follows from Lemmas 1, 4, and 3. We next prove suffi-
ciency.

We first calculate ∂U (θ̂;θ)

∂θ̂
when the sender’s strategy is continuous at θ̂ :

∂U (θ̂; θ)

∂θ̂
= −2[σ(θ̂) − k1θ − b1]dσ(θ̂)

dθ̂
− 2δ(θ̂ − k2θ − b2)

= −2(θ̂ − θ)[k1(S
′(θ̂) + k1) + δk2]

= −2(θ̂ − θ)[k1
rθ̂ + δb2

S(θ̂)
+ δk2]

= (θ̂ − θ)
∂2U (t; θ̂ )

∂t2

∣∣∣∣
t=θ̂

The expression has the same sign as θ − θ̂ by the second-order condition. Thus, whenever the 
sender’s strategy is continuous at θ̂ , the sender has an incentive to induce a slightly higher belief 
when θ > θ̂ and a slightly lower belief when θ < θ̂ . Now suppose S is discontinuous at θ̂ . By 
assumption, S jumps upward if k1 > 0 and downward if k1 < 0, with |S| being continuous. Then 
U (θ̂+; θ) − U (θ̂−; θ) > 0 if θ > θ̂ , and U (θ̂+; θ) − U (θ̂−; θ) < 0 if θ < θ̂ . Therefore, the 

18 To see this, notice d
2S(φ)

2 = d( dS
dφ

)
dS = r[ 1 − φ

2 (
rφ − k1)] = rφ2

3 (w2 + k1w − r) where φ � θ − θ0 and w � S .

dφ dS dφ S S S S φ
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a1

θ

k1θ + b1

S1

S2

θ0 Mm

Fig. 11. Contraction transform.

sender always benefits from inducing a belief that is closer to the true state θ . We therefore have 
incentive compatibility. �
Appendix C. Omitted proofs in Section 4

We first prove the Contraction and Expansion Lemmas, which help us identify the optimal 
incentive-compatible strategy in the proof of Theorem 2. The Off-Path-Belief Lemma specifies 
the off-path belief for the optimal incentive-compatible strategy. Then we can prove Theorem 2.

Definition 1. A strategy S is incentive compatible over W if U (θ ′; θ) ≤ U (θ; θ) for all θ, θ ′ ∈
W .

Lemma 5. Contraction Transform. Let �1 and �2 be two non-overlapping intervals partition-
ing �; that is, � = �1 ∪ �2, �1 ∩ �2 = ∅, θ1 < θ2 for all θ1 ∈ �1, θ2 ∈ �2. Suppose S1(θ)

is an incentive-compatible separating strategy. Suppose a separating strategy S2(θ) is incentive 
compatible over �2. If

1. ∀θ2 ∈ �2, |S2(θ2)| ≤ |S1(θ2)|
2. ∀θ1 ∈ �1, ∀θ2 ∈ �2, |S1(θ2) + k1(θ2 − θ1)| ≤ |S2(θ2) + k1(θ2 − θ1)|,

then

S(θ) �
{

S1(θ), if θ ∈ �1

S2(θ), if θ ∈ �2

is incentive compatible.

In other words, if an incentive-compatible separating strategy S1 contracts over �2 toward the 
bliss point of �2 while moving away from the bliss point of �1 (see Fig. 11), it is still incentive 
compatible.
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Proof of Lemma 5. Take a strategy S defined as above, and let σ denote its action. As S1 is 
incentive compatible, a sender with state θ ∈ �1 does not mimic any other state in �1. As S2 is 
incentive compatible over �2, a sender with state θ ∈ �2 does not mimic any other state in �2. 
Let θ1 ∈ �1, θ2 ∈ �2. A sender with state θ2 does not mimic θ1 because

U (θ1; θ2) ≤ −(S1(θ2))
2 − δ(θ2 − k2θ2 − b2)

2

≤ −(S2(θ2))
2 − δ(θ2 − k2θ2 − b2)

2

= −(S(θ2))
2 − δ(θ2 − k2θ2 − b2)

2

= U (θ2; θ2).

The first inequality is true because S1 is incentive compatible, and the second inequality is true 
by assumption.

The sender with state θ1 does not mimic θ2, because

U (θ2; θ1) = −(σ (θ2) − k1θ1 − b1)
2 − δ(θ2 − k2θ1 − b2)

2

= −(S(θ2) + k1(θ2 − θ1))
2 − δ(θ2 − k2θ1 − b2)

2

= −(S2(θ2) + k1(θ2 − θ1))
2 − δ(θ2 − k2θ1 − b2)

2

≤ −(S1(θ2) + k1(θ2 − θ1))
2 − δ(θ2 − k2θ1 − b2)

2

≤ −(S1(θ1))
2 − δ(θ1 − k2θ1 − b2)

2

= U (θ1; θ1).

The first inequality is true by assumption, and the second inequality is true because S1 is incentive 
compatible. �

For the following lemma, we only state the case of positive S.

Lemma 6. Monotone Expansion. Let θ0 ∈ � and θ0 �= θ0. Suppose qθ0 + n ≥ 0. Let 
S(θ; q, n, p) denote the solution for

dS

dθ
= qθ + n

S
+ p, S ≥ 0

with initial value S(θ0; q, n, p) = 0.19 For any θ ≥ θ0, S(θ; q, n, p) monotonically increases in 
n and p, increases in q if θ > 0, and decreases in q if θ < 0.

Proof of Lemma 6. It suffices to prove the monotonicity in p. Let p1 ≤ p2. We show 
S(θ; q, n, p1) ≤ S(θ; q, n, p2) for θ ≥ θ0.

By way of contradiction, suppose ∃θ∗ > θ0 such that S(θ∗; q, n, p1) > S(θ∗; q, n, p2). Be-
cause S(θ0; q, n, p1) = S(θ0; q, n, p2) = 0 and

S(θ;q,n,p) =
θ∫

θ0

∂S(θ;q,n,p)

∂θ
dθ,

there must exist θ̃ ∈ (θ0, θ∗) such that

19 When θ0 �= θ0, the differential equation with the initial value has a unique solution.
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S(θ̃;q,n,p1) > S(θ̃;q,n,p2)

and

∂S(θ;q,n,p1)

∂θ

∣∣∣∣
θ=θ̃

>
∂S(θ;q,n,p2)

∂θ

∣∣∣∣
θ=θ̃

,

contradicting

∂S(θ;q,n,p1)

∂θ

∣∣∣∣
θ=θ̃

= qθ + n

S(θ̃;q,n,p1)
+ p1

<
qθ + n

S(θ̃;q,n,p2)
+ p1

≤ qθ + n

S(θ̃;q,n,p2)
+ p2

= ∂S(θ;q,n,p2)

∂θ

∣∣∣∣
θ=θ̃

. �

Lemma 7. Off-Path Belief. Let AS
1 � {aS

1 (θ)|θ ∈ �}. If AS
1 ⊂ A1, a continuous incentive-

compatible strategy σ(θ) and degenerate off-path belief

θ̂ (a1) =
{

θ, if a1 < minθ∈� σ(θ)

θ, if a1 > maxθ∈� σ(θ).

Here, θ ∈ arg minθ∈� σ(θ), θ ∈ arg maxθ∈� σ(θ) form a perfect Bayesian equilibrium.

Proof of Lemma 7. If the sender takes action a1 < minθ∈� σ(θ) given state θ , the receiver be-
lieves θ̂ = θ . Hence, the sender’s payoff

V (θ, θ, a1) = −(a1 − k1θ − b1)
2 − δ(θ − k2θ − b2)

2

< −(min
θ∈�

σ(θ) − k1θ − b1)
2 − δ(θ − k2θ − b2)

2

= U (θ; θ)

because AS
1 ⊂ A1. That is, this action is strictly worse than mimicking state θ . Therefore, this 

deviation is not profitable for the sender.
On the other hand, if the sender takes action a1 > maxθ∈� σ(θ) at state θ , the receiver believes 

θ = θ . The sender’s payoff

V (θ, θ, a1) = −(a1 − k1θ − b1)
2 − δ(θ − k2θ − b2)

2

< −(max
θ∈�

σ(θ) − k1θ − b1)
2 − δ(θ − k2θ − b2)

2

= U (θ; θ).

This action is strictly worse than mimicking state θ . �
Proof of Theorem 2. Throughout this proof, it is very helpful to keep in mind the figures of 
integral curves. And we only need to consider the case of k1 > 0 since the cases of k1 > 0 and 
k1 < 0 are symmetric around the θ -axis by differential equation (2). Let S∗ denote the optimal 
27



X. Weng, F. Wu and X. Yin Journal of Economic Theory 213 (2023) 105733
Fig. 12. Solutions for r = 0. The yellow region is removed by the SOC. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

incentive-compatible strategy. Let S̃ denote any discontinuous incentive-compatible strategy and 
θ̃ denote any discontinuous point.

As

d2S(φ)

dφ2 = d( dS
dφ

)

dS

dS

dφ
= r(

1

S
− φ

S2

dS

dφ
),

the second-order condition can be reduced to

∂2U (θ ′; θ)

∂θ ′2

∣∣∣∣
θ ′=θ

= −2(
dS(θ)

dθ
+ k1)

2 − 2S
d2S(θ)

dθ2 − 2δ

= −2δ[k2 + k1
(k2 − 1)θ + b2

S
]

≤ 0.

Notice that any linear solution of (2) satisfies the second-order condition trivially, as −2(
dσ(θ)

dθ
)2 −

2δ ≤ 0.
Case 1: r = 0

We plot the solutions in Fig. 12. The SOC is δ[ k1b2
S

+1] ≥ 0. We only analyze the case of b2 > 020

since the case of b2 < 0 can be addressed centro-symmetrically. When b2 > 0, the SOC requires 
S ≥ 0 or S ≤ −k1b2. There is one strategy crossing (θ, S) = (m, 0),

k2
1(θ − m) + k1S

∗ + δb2 ln(δb2 − k1S
∗) = δb2 ln(δb2) (S∗ ≥ 0).

It is uniformly closest to sender’s bliss point S = 0 among all incentive-compatible strategies 
S ≥ 0. Next we show it dominates any incentive-compatible strategy S < 0. For a solution 
k2

1θ + k1S + δb2 ln(δb2 − k1S) = C, let S+(θ; C), S−(θ; C) denote the positive branch (S ≥ 0) 
and the negative one (S ≤ 0). By the Monotone Expansion Lemma 6, |S+(θ; C)| ≤ |S−(θ; C)|. 
Thus, S∗ dominates all incentive-compatible strategies S ≤ 0 defined over �. Next we show S∗
dominates any discontinuous incentive-compatible strategy S̃. Although the SOC does not bind 

20 When b2 = 0, the optimal solution is trivially S = 0.
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Fig. 13. Solutions for r > 0. The yellow shadow is the region removed by the SOC. This figure is drawn for k1 = 1, 
k2 = 1.5, b1 = b2 = δ = 0.5.

S∗, it binds the initial condition of any discontinuous incentive-compatible strategy S̃ such that 
S̃(0) ≤ −k1b2. Let S−(θ; δb2 ln(δb2) + k2

1m) denote the negative branch of the integral curve on 
which S∗ lies. For θ ∈ [m, θ̃ ],

|S̃(θ)| ≥ |S−(θ; δb2 ln(δb2) + k2
1m)| ≥ |S∗(θ)|,

where the second inequality is true by the Monotone Expansion Lemma. Because |S̃(θ̃ )| ≥
|S∗(θ̃)| and |S| is continuous,

|S̃(θ)| ≥ |S∗(θ)|, θ ∈ [θ̃ ,M].
S̃ is uniformly dominated by S∗.

Thus, the optimal incentive-compatible strategy is unique and is S∗, which is continuous. By 
dσ
dθ

= δb2
S

> 0, it is monotonic. Moreover, by k1 > 0,

AS
1 ⊂ A1.

Thus, it supports a perfect Bayesian equilibrium by Lemma 7.
Case 2: r > 0

In this case, � > 0. In Fig. 13, we plot the solution for r > 0.
Suppose θ0 /∈ �. It suffices to consider θ0 < m. There is one solution crossing (θ, S) = (m, 0)

among all solutions (9):

(w1φ − S∗)w1

(S∗ − w2φ)w2
= [w1(m − θ0)]w1

[w2(θ0 − m)]w2
(S∗ ≥ 0, φ ∈ [m − θ0,M − θ0])

It satisfies the SOC and is uniformly closest to the sender’s bliss point S = 0 among all incentive-
compatible strategies S ≥ 0. By the Monotone Expansion Lemma 6, S∗ dominates any incentive-
compatible strategy S < 0. By the same argument as in case 1, S∗ dominates any discontinuous 
incentive-compatible strategies. Thus, the optimal incentive-compatible strategy is unique and 
is S∗, which is continuous and nonlinear. Because dσ

dθ
= rφ

S∗ > 0, it is monotonic. Moreover, it 
supports a perfect Bayesian equilibrium by Lemma 7.
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Fig. 14. Solutions for r < 0, � > 0. The yellow shadow identifies the region removed by the SOC. This figure is drawn 
for k1 = 1, k2 = 0.8, b1 = δ = 0.5, b2 = 0.1.

Suppose θ0 ∈ �. Branches (w1φ−S)w1

(S−w2φ)w2 = C, (S−w1φ)w1

(w2φ−S)w2 = C cannot be supported on �. In 

addition, Branches (S−w1φ)w1

(S−w2φ)w2 = C, (w1φ−S)w1

(w2φ−S)w2 = C, S = w2φ are uniformly dominated by S∗ =
w1φ. Next we show S∗ uniformly dominates any discontinuous incentive-compatible strategy S̃. 
If w1(m − θ0) < S̃(m) < w2(m − θ0), we must have θ̃ < θ0,

|S̃(θ̃ )| < w2(θ̃ − θ0)

because w1 > 0 > w2 and |w1| ≤ |w2|. Then, S̃ cannot be supported on �. If S̃(m) < w1(m −θ0), 
S̃ either cannot be supported on � if |S̃(θ̃ )| < |w2(θ̃ − θ0)| or is uniformly dominated by S∗ =
w1(θ − θ0) if |S̃(θ̃ )| > |w2(θ̃ − θ0)|.

Thus, the optimal incentive-compatible strategy is unique and is S∗, which is continuous, 
monotonic, and linear. Moreover, as w1 > 0 and k1 > 0, AS

1 ⊂ A1. Thus, S∗ supports a perfect 
Bayesian equilibrium by Lemma 7.

Case 3: r < 0
We further categorize this case in terms of �.

Case 3.1: r < 0, � > 0
In Fig. 14, we plot the solution for r < 0, � > 0.

Suppose θ0 /∈ �. If θ0 ≥ M , there is one solution crossing (θ, S) = (m, 0):

(w1φ − S∗)w1

(w2φ − S∗)w2
= [w1(m − θ0)]w1

[w2(m − θ0)]w2
(S∗ ≥ 0, φ ∈ [m − θ0,M − θ0]) (13)

It satisfies the SOC and is uniformly closest to the sender’s bliss point S = 0 among all S ≥ 0
incentive-compatible strategies. By the monotone expansion property, it dominates any incentive-
compatible strategy with S < 0. By the same argument as in case 1, S∗ dominates any dis-
continuous incentive-compatible strategies. Thus, S∗ is the unique optimal incentive-compatible 
strategy, and it is continuous and nonlinear. As dσ

dθ
= rφ

S∗ > 0, S∗ is monotonic. Moreover, S∗
supports a perfect Bayesian equilibrium by Lemma 7. If θ0 ≤ m, the same argument applies and 
the optimal one crosses (θ, S) = (M, 0):

(S∗ − w1φ)w1

∗ w2
= (−w1(M − θ0))

w1

w2
(S∗ ≤ 0, φ ∈ [m − θ0,M − θ0]) (14)
(S − w2φ) (−w2(M − θ0))
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Fig. 15. Solutions for r < 0, � = 0. The yellow region is removed by the SOC. This figure is drawn for k1 = 1, k2 = 0.5, 
b1 = 0.5, b2 = 0.2, δ = 0.4.

Suppose θ0 ∈ �. By the argument above, for θ ∈ [m, θ0], solution (13) is optimal; for 
θ ∈ [θ0, M], solution (14) is optimal. Nevertheless, since (13) and (14) are not necessarily21

on the same integral curve, we need to check whether the combination S∗: (13)+(14) is incen-
tive compatible. By the centrosymmetry of DE (5), any integral curve crossing (φ, S) = (0, 0) is 
centrosymmetric around (φ, S) = (0, 0). By DE (5),

dσ(θ)

dθ
= dS∗

dφ
+ k1 = δ(k2 − 1)φ

S∗ > 0

on the combination (13)+(14). Thus, by Lemma 5, the combination is a contraction transform 
(see Fig. 11) of the integral curve (13) if θ0 > m+M

2 , (14) if θ0 < m+M
2 . Therefore, the combi-

nation S∗ is incentive compatible and dominates any continuous incentive-compatible strategy. 
Next we show S∗ dominates any discontinuous incentive-compatible strategy S̃.

By the Monotone Expansion Lemma and the second-order condition,

|S̃(θ̃ )| ≥ |S∗(θ̃ )|.
If |S̃(θ̃ )| ≤ |w2(θ̃ − θ0)|, S̃ is uniformly dominated by S∗; if |S̃(θ̃ )| > |w2(θ̃ − θ0)|, S̃ is either 
undefined for the entire � or uniformly dominated by S∗ by the Monotone Expansion Lemma.

Therefore, S∗ is the unique optimal incentive-compatible strategy and is nonlinear, monotonic, 
and continuous. By Lemma 7, it supports a perfect Bayesian equilibrium.

The analysis for the remaining cases below is similar.
Case 3.2: r < 0, � = 0 (see Fig. 15)
If θ0 > M , the unique optimal solution crosses (θ, S) = (m, 0):

ln(w1φ−S∗)− w1φ

S∗ − w1φ
= ln(w1(m−θ0))+1 (S∗ ≥ 0, φ ∈ [m−θ0,M −θ0]) (15)

The solution satisfies the SOC and is continuous and nonlinear. It is monotonic by dσ
dθ

= rφ
S∗ > 0. 

By Lemma 7, it supports a perfect Bayesian equilibrium. If θ0 < m, the unique optimal strategy 
crosses (θ, S) = (M, 0):

21 They are on the same integral curve if and only if θ0 = m+M .
2
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Fig. 16. Delegation S(θ). This figure is drawn for k1 = k2 = 1, b1 = b2 = 0.2, δ = 0.5.

ln(S∗ − w1φ) − w1φ

S∗ − w1φ
= ln(−w1(M − θ0)) + 1 (S∗ ≤ 0, φ ∈ [m − θ0,M − θ0])

(16)

This satisfies the SOC and is continuous and nonlinear. It is monotonic because dσ
dθ

= rφ
S∗ > 0. 

By Lemma 7, it supports a perfect Bayesian equilibrium. If θ0 ∈ �, by the same argument as in 
case 3.2, the combination (15)+(16) is the unique optimal incentive-compatible strategy, which 
is nonlinear, continuous, and monotonic and supports a perfect Bayesian equilibrium. �
Proof of Proposition 5. If the sender’s strategy is linear, we can directly check how |w1| varies 
with δ by (7) and (8).

Now suppose the sender’s strategy in Riley equilibrium is nonlinear. If r = 0, we can apply 
the Monotone Expansion Lemma to

dS

dθ
= δb2

S
− k1

with θ0 = m or θ0 = M . If r �= 0, we can similarly apply the Monotone Expansion Lemma to

dS

dφ
= rφ

S
− k1

with θ0 = m or θ0 = M . �
Appendix D. Omitted proofs in Section 5

Proof of Proposition 3. The proof follows directly by checking each solution in the proof of 
Theorem 2 and taking k1 = 1 and b1 = 0. �
Proof of Proposition 4. By the proof of Theorem 2, any incentive-compatible strategy belongs 
to one of the following two cases:
(1) S(θ) is continuous (Fig. 16):

θ + S + δb ln |S − δb| = C, (S ≥ 0 or S ≤ −b)
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or

S = δb (17)

(2) S(θ) is discontinuous at some θ̃ ∈ (0, 1) and satisfies the following conditions:

θ + S + δb ln(δb − S) = C (S ≤ −b)

for θ < θ̃ , and

θ + S + δb ln(S − δb) = C′ (S > δb)

for θ > θ̃ , where C and C′ are chosen such that −S(θ̃−) = S(θ̃+).
By Lemma 9, all discontinuous strategies are Pareto dominated by linear strategy (17). By 

Lemma 8, continuous decreasing strategies

θ + S + δb ln(δb − S) = C, S ≤ −b (18)

cannot be part of any perfect Bayesian equilibrium.
Among all increasing continuous strategies, the (agent’s) optimal incentive-compatible strat-

egy is closest to the principal’s ideal point. �
Lemma 8. Strategy (18) cannot be part of a perfect Bayesian equilibrium.

Proof of Lemma 8. Since
dS

dθ
= δb

S
− 1 < −1,

we have

S(θ) < −b − θ.

Since σ(θ) ≤ 0 on the equilibrium path for all θ , we consider a deviation to a1 = θ + b at some 
state θ > 0.

If the off-path belief assigns probability 1 to θ = 0 when the agent deviates to a1 = θ + b, the 
agent’s payoff is

V (θ,0, θ + b) = −δ(θ + b)2 ≥ −(θ + b)2 > −S2(θ) > −S2(θ) − δb2 = V (θ, θ, σ (θ)),

a profitable deviation regardless of θ .
If the off-path belief assigns probability 1 to θ = 1 when the agent deviates to a1 = θ + b, the 

agent’s payoff is

V (θ,1, θ + b) = −δ(1 − θ − b)2.

When state θ ≥ 1
2 − b,

V (θ,1, θ + b) = −δ(1 − θ − b)2 ≥ −δ(θ + b)2 > −S2(θ) > V (θ, θ, σ (θ)),

a profitable deviation whenever θ ≥ 1
2 − b.

For other possible off-path beliefs, the principal will take a second-period action within the 
interval (0, 1). Hence the agent’s payoff is bounded below by min{−δ(θ + b)2, −δ(1 − θ − b)2}. 
Therefore, there is always a profitable deviation when θ ≥ 1 − b. �
2
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Fig. 17. Discontinuous colution.

Lemma 9. Any discontinuous incentive-compatible strategy in a perfect Bayesian equilibrium is 
Pareto dominated by the linear strategy S = δb.

Proof of Lemma 9. Compared with the discontinuous solution, the linear special solution is 
uniformly closer to the agent’s bliss point. Thus, it suffices to prove that the linear special solution 
dominates from the principal’s perspective.

This proof proceeds as follows (see Fig. 17): 1. Move the left area S ≤ −b closer to the 
principal’s bliss point S = −b to form an upper bound to her payoff through linear approximation 
over interval [0, θ̃]. 2. Move the right area S > δb to the left (decrease the constant C1) and then 
reach an upper bound to the principal’s payoff through linear approximation over the interval 
[θ̃ , θ̃ + D] (D is defined as the size of interval when the linear approximation is above S = δb). 
Notice that the movement in the second step relies on the first step since |S| is continuous at θ̃ . 3. 
Assume θ̃ +D ≤ 1. Prove that the upper bound of the principal’s payoff by linear approximation 
is lower than that of the special linear solution, −(b + δb)2. 4. Prove that θ̃ + D ≤ 1; otherwise 
this solution could not be a perfect Bayesian equilibrium.

Step 1. Define the principal’s payoff over [0, θ̃] as u1 and her payoff over [0, θ̃] of linear 
approximation as U1. For 0 ≤ θ ≤ θ̃ , S ≤ −b,

dS

dθ
= δb

S
− 1 ≥ −(1 + δ)

S(θ̃−) > −b − (1 + δ)θ̃ .

Since d
2S

dθ2 ≥ 0,

dS

dθ
< −[1 + δb

b + (1 + δ)θ̃
].

Define K as

K = 1 + δb

˜
b + (1 + δ)θ
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S(θ) = S(0) +
θ∫

0

dS(t)

dt
dt < −b − Kθ

u1 = −
θ̃∫

0

[S(θ) + b]2dθ < −
θ̃∫

0

(Kθ)2dθ = −1

3
K2θ̃3 = U1

S(θ̃−) = S(0) +
θ̃∫

0

dS(θ)

dθ
dθ < −b − Kθ̃.

Define S0 as

S0 = b + Kθ̃.

Step 2. Denote the principal’s payoff over [θ̃ , 1] as u2 and her payoff over [θ̃ , 1] of lin-
ear approximation as U2. Denote the solution passing through (θ̃+, S(θ̃+)) as θ + S(θ, C1) +
δb ln[S(θ, C1) − δb] = C1, and the solution passing through (θ̃+, S0) as θ + S(θ, C∗

1 ) +
δb ln[S(θ, C∗

1 ) − δb] = C∗
1 .

For θ̃ ≤ θ ≤ 1, S > δb,

∂S(θ,C)

∂C
= −∂S(θ,C)

∂θ
> 0.

Since S(θ̃+) = −S(θ̃−) > S0,

C1 > C∗
1

S(θ,C1) > S(θ,C∗
1 ).

Since 
∂S2(θ,C∗

1 )

∂θ2 > 0

S(θ,C∗
1 ) ≥ S0 + (θ − θ̃ )

∂S(t,C∗
1 )

∂t

∣∣∣∣
t=θ̃+

= S0 + (θ − θ̃ )(
δb

S0
− 1).

Define k as

k = −∂S(t,C∗
1 )

∂t

∣∣∣∣
t=θ̃+

= 1 − δb

S0
.

Define D as the size of interval when the linear approximation is above S = δb

S0 + D(
δb

S0
− 1) = δb

D = S0.

Therefore, for θ ∈ [θ̃ , θ̃ + D],
S(θ,C1) > S(θ,C∗

1 ) ≥ S0 − k(θ − θ̃ ) ≥ δb,

while S(θ, C1) > δb for θ ∈ [θ̃ + D, 1]. Here we assume θ̃ + D ≤ 1, and we prove that this 
assumption is guaranteed in step 3.
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u2 = −
1∫

θ̃

[S(θ,C1) + b]2dθ

< −
1∫

θ̃

[S(θ,C∗
1 ) + b]2dθ

< −
θ̃+D∫
θ̃

[S0 − k(θ − θ̃ ) + b]2dθ −
1∫

θ̃+D

(δb + b)2dθ

= −
D∫

0

[kt + (b + δb)]2dt − (b + δb)2(1 − θ̃ − D)

=U2

Step 3. To prove u1 + u2 < −(b + δb)2, it suffices to prove

U1 + U2 < −(b + δb)2. (19)

Define p = b + δb, q = b − δb. (19) becomes

−1

3
K2θ̃3 − pkD2 − k2 D3

3
< −p2θ̃ .

It would be sufficient if we could prove that

pkD2 ≥ p2θ̃ .

With the definitions of k, D, and S0,

S0(S0 − δb) ≥ pθ̃

(b + Kθ̃)(b + Kθ̃ − δb) ≥ pθ̃. (20)

For inequality (20), define G(θ̃) as

G(θ̃) = LHS − RHS.

To prove (20), it suffices to prove that G(θ̃) ≥ 0. Since K = 1 + δb

b+(1+δ)θ̃
> 1,

G(θ̃) > (θ̃ + b)(θ̃ + q) − pθ̃ = θ̃2 + b(1 − 2δ)θ̃ + bq.

However, if δ ≤ 0.5, then G(θ̃) > 0, which concludes our proof. So we focus on the case of

δ > 0.5 (21)

from now on.

G(θ̃) = K2θ̃2 + [K(q + b) − p]θ̃ + qb

G(0) = bq ≥ 0

To prove G(θ̃) ≥ 0, it is sufficient to prove
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G′(θ̃ ) ≥ 0

G′(θ̃ ) = 2θ̃K2 + K(b + q) − p + 2θ̃2KK ′ + (b + q)θ̃K ′.

By K(θ̃) = 1 + δb

b+(1+δ)θ̃
, we can find its derivative with regard to θ̃ :

K ′(θ̃) = −δb
1 + δ

[b + (1 + δ)θ̃ ]2

K ′′(θ̃) = 2δb
(1 + δ)2

[b + (1 + δ)θ̃ ]3

Since G′(0) = K(b + q) − p = (1 + δ)(b + q) − p = (1 + δ)q ≥ 0, to arrive at G′(θ̃) ≥ 0, it is 
sufficient to prove

G′′(θ̃) ≥ 0 (22)

G′′(θ̃) =4θ̃KK ′ + 2K2 + (b + q)K ′ + 2(2θ̃KK ′ + θ̃2K ′K ′ + θ̃2KK ′′)
+ (b + q)(K ′ + θ̃K ′′)

=8θ̃KK ′ + 2K2 + 2(b + q)K ′ + 2θ̃2K ′K ′ + 2θ̃2KK ′′ + (b + q)θ̃K ′′.

To prove (22), because 2θ̃2K ′K ′ + 2θ̃2KK ′′ > 0, it is sufficient to prove

4θ̃KK ′ + K2 + (b + q)K ′ + b + q

2
θ̃K ′′ ≥ 0

K2 + b + q

2
θ̃K ′′ ≥ [4θ̃K + (b + q)] · |K ′|.

Plugging in K(θ̃), K ′(θ̃), and K ′′(θ̃), it becomes

(1 + δ)2(b + θ̃ )2 + b + q

2
θ̃

2δb(1 + δ)2

b + (1 + δ)θ̃
≥ [4θ̃K + (b + q)]δb(1 + δ)

(1 + δ)(b + θ̃ )2 + θ̃
(b + q)δb(1 + δ)

b + (1 + δ)θ̃
≥ [4θ̃K + (b + q)]δb

(1 + δ)θ̃2 + θ̃b[2(1 + δ) + (b + q)δ(1 + δ)

b + (1 + δ)θ̃
− 4Kδ] + (1 + δ)b2 − δb2(2 − δ) ≥ 0

(1 + δ)θ̃2 + θ̃b[2(1 + δ) + δ(b + q − 4b − 4θ̃ )(1 + δ)

b + (1 + δ)θ̃
] + (1 + δ2 − δ)b2 ≥ 0

(1 + δ)θ̃2 + θ̃b(1 + δ)[2 − δ
(2 + δ)b + 4θ̃

b + (1 + δ)θ̃
] + (1 + δ2 − δ)b2 ≥ 0. (23)

Analyze the term in the square bracket (2+δ)b+4θ̃

b+(1+δ)θ̃
.

If 2+δ
1 ≤ 4

1+δ
, then δ ≤ δ∗ ≈ 0.56

[2 − δ
(2 + δ)b + 4θ̃

b + (1 + δ)θ̃
] ≥ 2 − δ

4

1 + δ
≥ 2 − δ

4

1 + 1
2

≥ 2 − 8δ∗

3
> 0,

where the second inequality is ensured by (21). Therefore, this concludes our proof.
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Fig. 18. 4(1 + δ2 − δ) − (1 + δ)(δ2 + 2δ − 2)2.

If 2+δ
1 > 4

1+δ
, δ > δ∗ ≈ 0.56 and [2 − δ

(2+δ)b+4θ̃

b+(1+δ)θ̃
] > 2 − δ(2 + δ). For (23),

LHS > (1 + δ)θ̃2 + θ̃b(1 + δ)[2 − δ(2 + δ)] + (1 + δ2 − δ)b2.

Thus, it suffices to prove

(1 + δ)θ̃2 + θ̃b(1 + δ)(2 − 2δ − δ2) + (1 + δ2 − δ)b2 ≥ 0. (24)

If 2 − 2δ − δ2 ≥ 0, δ ≤ δ∗∗ ≈ 0.73, and we would be done here. Otherwise, LHS of (24) would 
reach its minimum at θ̃ = b(δ2+2δ−2)

2 . (24) becomes

−b2(1 + δ)(δ2 + 2δ − 2)2

4
+ (1 + δ2 − δ)b2 ≥ 0

4(1 + δ2 − δ) − (1 + δ)(δ2 + 2δ − 2)2 ≥ 0,

which holds not only for δ > δ∗∗ ≈ 0.73 but for ∀δ ∈ [0, 1] (Fig. 18).
Step 4. The above argument only works for θ̃ +D ≤ 1. Now we rule out the case of θ̃ +D > 1. 

If θ̃ +D > 1, the agent with state θ̃ would deviate to S(θ̃) = 0 under off-equilibrium belief θ̂ = 1
because

V (θ̃, θ̃ , σ (θ̃)) = −S2(θ̃) − δb2 < −S2
0 − δb2 ≤ −S2

0 = −D2 < −(1 − θ̃ )2

≤ −(1 − θ̃ − b)2 ≤ −δ(1 − θ̃ − b)2 = V (θ̃,1, θ̃ + b),

where the fourth inequality holds since θ̃ < 1
2 − b (by the proof of Lemma 8). In addition, the 

agent will deviate to S(θ̃) = 0 if off-equilibrium belief θ̂ = 0 (by the proof of Lemma 8). There-
fore, an agent with state θ̃ would deviate no matter what the off-equilibrium belief is, which 
means this is not a perfect Bayesian equilibrium. �
Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105733.
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